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Abstract

This paper addresses action spotting, the spatiotem-
poral detection and localization of human actions in
video. A novel compact local descriptor of video dy-
namics in the context of action spotting is introduced
based on visual spacetime oriented energy measure-
ments. This descriptor is efficiently computed directly
from raw image intensity data and thereby forgoes the
problems typically associated with flow-based features.
An important aspect of the descriptor is that it allows
for the comparison of the underlying dynamics of two
spacetime video segments irrespective of spatial appear-
ance, such as differences induced by clothing, and with
robustness to clutter. An associated similarity measure
is introduced that admits efficient exhaustive search for
an action template across candidate video sequences.
Empirical evaluation of the approach on a set of chal-
lenging natural videos suggests its efficacy.

1. Introduction

This paper addresses the problem of detecting and
localizing spacetime patterns, as represented by a sin-
gle query video, in a reference video database. Specifi-
cally, patterns of current concern are those induced by
human actions. This problem is referred to as action
spotting. The term “action” refers to a simple dynamic
pattern executed by a person over a short duration of
time (e.g., walking and hand waving). Potential ap-
plications of the presented approach include video in-
dexing and browsing, surveillance, visually-guided in-
terfaces and tracking initialization.

A key challenge in action spotting arises from the
fact that the same underlying pattern dynamics can
yield very different image intensities due to spatial ap-
pearance differences, as with changes in clothing and
live action versus animated cartoon content. Another
challenge arises in natural imaging conditions where
scene clutter requires the ability to distinguish relevant
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Figure 1. Overview of approach to action spotting. (top) A
template (query) and search (database) video serve as in-
put; both the template and search videos depict the action
of “jumping jacks” taken from the Weizmann action data
set [11]. (middle) Application of spacetime oriented energy
filters decomposes the input videos into a distributed rep-
resentation according to 3D, (x, y, t), spatiotemporal orien-
tation. (bottom) In a sliding window manner, the distri-
bution of oriented energies of the template is compared to
the search distribution at corresponding positions to yield a
similarity volume. Finally, significant local maxima in the
similarity volume are identified.

pattern information from distractions. Clutter can be
of two types: Background clutter arises when actions
are depicted in front of complicated, possibly dynamic,
backdrops; foreground clutter arises when actions are
depicted with distractions superimposed, as with dy-
namic lighting, pseudo-transparency (e.g., walking be-
hind a chain-link fence), temporal aliasing and weather
effects (e.g., rain and snow). It is proposed that the
choice of representation is key to meeting these chal-
lenges: A representation that is invariant to purely spa-
tial pattern allows actions to be recognized indepen-
dent of actor appearance; a representation that sup-
ports fine delineations of spacetime structure makes it



possible to tease action information from clutter.
For present purposes, local spatiotemporal orienta-

tion is of fundamental descriptive power, as it captures
the first-order correlation structure of the data irre-
spective of its origin (i.e., irrespective of the underlying
visual phenomena), even while distinguishing a wide
range of image dynamics (e.g., single motion, multiple
superimposed motions, temporal flicker). Correspond-
ingly, visual spacetime will be represented according
to its local 3D, (x, y, t), orientation structure: Each
point of spacetime will be associated with a distribu-
tion of measurements indicating the relative presence of
a particular set of spatiotemporal orientations. Com-
parisons in searching are made between these distribu-
tions. Figure 1 provides an overview of the approach.

A wealth of work has considered the analysis of hu-
man actions from visual data [26]. A brief survey of
representative approaches follows.

Tracking-based methods begin by tracking body
parts and/or joints and classify actions based on fea-
tures extracted from the motion trajectories (e.g.,
[28, 19, 1]). General impediments to fully automated
operation include tracker initialization and robustness.
Consequently, much of this work has been realized with
some degree of human intervention.

Other methods have classified actions based on fea-
tures extracted from 3D spacetime body shapes as rep-
resented by contours or silhouettes, with the motiva-
tion that such representations are robust to spatial ap-
pearance details [3, 11, 15]. This class of approach
relies on figure-ground segmentation across spacetime,
with the drawback that robust segmentation remains
elusive in uncontrolled settings. Further, silhouettes
do not provide information on the human body limbs
when they are in front of the body (i.e., inside silhou-
ette) and thus yield ambiguous information.

Recently, spacetime interest points have emerged as
a popular means for action classification [22, 8, 17, 16].
Interest points typically are taken as spacetime loci
that exhibit variation along all spatiotemporal dimen-
sions and provide a sparse set of descriptors to guide
action recognition. Sparsity is appealing as it yields
significant reduction in computational effort; however,
interest point detectors often fire erratically on shad-
ows and highlights [14], and along object occluding
boundaries, which casts doubt on their applicability
to cluttered natural imagery. Additionally, for actions
substantially comprised of smooth motion, important
information is ignored in favour of a small number of
possibly insufficient interest points.

Most closely related to the approach proposed in
the present paper are others that have considered
dense templates of image-based measurements to rep-

resent actions (e.g., optical flow, spatiotemporal gra-
dients and other filter responses selective to both spa-
tial and temporal orientation), typically matched to
a video of interest in a sliding window formulation.
Chief advantages of this framework include avoidance
of problematic localization, tracking and segmentation
preprocessing of the input video; however, such ap-
proaches can be computationally intensive. Further
limitations are tied to the particulars of the image mea-
surement used to define the template.

Optical flow-based methods (e.g., [9, 14, 20]) suffer
as dense flow estimates are unreliable where their local
single flow assumption does not hold (e.g., along oc-
cluding boundaries and in the presence of foreground
clutter). Work using spatiotemporal gradients has en-
capsulated the measurements in the gradient structure
tensor [23, 15]. This tack yields a compact way to char-
acterize visual spacetime locally, with template video
matches via dimensionality comparisons; however, the
compactness also limits its descriptive power: Areas
containing two or more orientations in a region are not
readily discriminated, as their dimensionality will be
the same; further, the presence of foreground clutter
in a video of interest will contaminate dimensionality
measurements to yield match failures. Finally, meth-
ods based on filter responses selective for both spatial
and temporal orientation (e.g., [5, 13, 18]) suffer from
their inability to generalize across differences in spatial
appearance (e.g., different clothing) of the same action.

The spacetime features used in the present work de-
rive from filter techniques that capture dynamic as-
pects of visual spacetime with robustness to purely
spatial appearance, as developed previously (e.g., in
application to motion estimation [24] and video seg-
mentation [7]). The present work appears to be the
first to apply such filtering to action analysis. Other
notable applications of similar spacetime oriented en-
ergy filters include, pattern categorization [27], track-
ing [4] and spacetime stereo [25].

In the light of previous work, the major contribu-
tions of the present paper are as follows. (i) A novel
compact local oriented energy feature set is developed
for action spotting. This representation supports fine
delineations of visual spacetime structure to capture
the rich underlying dynamics of an action from a sin-
gle query video. (ii) Associated computationally ef-
ficient similarity measure and search method are pro-
posed that leverage the structure of the representation.
The approach does not require preprocessing in the
form of person localization, tracking, motion estima-
tion, figure-ground segmentation or learning. (iii) The
approach can accommodate variable appearance of the
same action, rapid dynamics, multiple actions in the



field-of-view, cluttered backgrounds and is resilient to
the addition of distracting foreground clutter. While
others have dealt with background clutter, it appears
that the present work is the first to address directly
the foreground clutter challenge. (iv) The approach is
demonstrated on a set of challenging natural videos.

2. Technical approach

In visual spacetime the local 3D, (x, y, t), orientation
structure of a pattern captures significant, meaningful
aspects of its dynamics. For action spotting, single mo-
tion at a point, e.g., motion of an isolated body part, is
captured as orientation along a particular spacetime di-
rection. Significantly, more complicated scenarios still
give rise to well defined spacetime orientation distribu-
tions: Occlusions and multiple motions (e.g., as limbs
cross or foreground clutter intrudes) correspond to mul-
tiple orientations; high velocity and temporal flicker
(e.g., as encountered with rapid actions) correspond to
orientations that become orthogonal to the temporal
axis. Further, appropriate definition of local spacetime
oriented energy measurements can yield invariance to
purely spatial pattern characteristics and support ac-
tion spotting as an actor changes spatial appearance.
Based on these observations, the developed action spot-
ting approach makes use of such measurements as local
features that are combined into spacetime templates to
maintain relative geometric spacetime positions.

2.1. Features: Spacetime orientation

The desired spacetime orientation decomposition is
realized using broadly tuned 3D Gaussian third deriv-
ative filters, G3θ̂

(x), with the unit vector θ̂ captur-
ing the 3D direction of the filter symmetry axis and
x = (x, y, t) spacetime position. The responses of
the image data to this filter are pointwise rectified
(squared) and integrated (summed) over a spacetime
neighbourhood, Ω, to yield the following locally aggre-
gated pointwise energy measurement

Eθ̂(x) =
∑
x∈Ω

(G3θ̂
∗ I)2, (1)

where I ≡ I(x) denotes the input imagery and ∗ con-
volution. Notice that while the employed Gaussian
derivative filter is phase-sensitive, summation over the
support region ameliorates this sensitivity to yield a
measurement of signal energy at orientation θ. More
specifically, this follows from Rayleigh’s theorem [12]
that specifies the phase-independent signal energy in
the frequency passband of the Gaussian derivative:

Eθ̂(x) ∝
∑

ωx,ωy,ωt

|F{G3θ̂
∗ I}(ωx, ωy, ωt)|2, (2)

where (ωx, ωy) denote the spatial frequency, ωt the
temporal frequency and F the Fourier transform1.

Each oriented energy measurement, (1), is con-
founded with spatial orientation. Consequently, in
cases where the spatial structure varies widely about
an otherwise coherent dynamic region (e.g., single mo-
tion of a surface with varying spatial texture), the re-
sponses of the ensemble of oriented energies will re-
flect this behaviour and thereby are appearance depen-
dent; whereas, a description of pure pattern dynamics
is sought. Note, that while in tracking applications it
is vital to preserve both the spatial appearance and dy-
namic properties of a region of interest, in action spot-
ting one wants to be invariant to appearance, while
being sensitive to dynamic properties. This is neces-
sary so as to detect different people wearing a variety
of clothing as they perform the same action. To re-
move this difficulty, the spatial orientation component
is discounted by “marginalization”, as follows.

In general, a pattern exhibiting a single spacetime
orientation (e.g., image velocity) manifests itself as
a plane through the origin in the frequency domain
[12]. Correspondingly, summation across a set of x-y-t-
oriented energy measurements consistent with a single
frequency domain plane through the origin is indica-
tive of energy along the associated spacetime orienta-
tion, independent of purely spatial orientation. Since
Gaussian derivative filters of order N = 3 are used in
the oriented filtering, (1), it is appropriate to consider
N + 1 = 4 equally spaced directions along each fre-
quency domain plane of interest, as N + 1 directions
are needed to span orientation in a plane with Gaussian
derivative filters of order N [10]. Let each plane be
parameterized by its unit normal, n̂; a set of equally
spaced N + 1 directions within the plane are given as

θ̂i = cos
(

2πi

N + 1

)
θ̂a(n̂) + sin

(
2πi

N + 1

)
θ̂b(n̂), (3)

with θ̂a(n̂) = n̂ × êx/‖n̂ × êx‖, θ̂b(n̂) = n̂ × θ̂a(n̂), êx

the unit vector along the ωx-axis2 and 0 ≤ i ≤ N .
Now, energy along a frequency domain plane with

normal n̂ and spatial orientation discounted through
marginalization, is given by summing across the set of
measurements, Eθ̂i

, as

Ẽn̂(x) =
N∑

i=0

Eθ̂i
(x), (4)

with θ̂i one of N + 1 = 4 specified directions, (3), and
each Eθ̂i

calculated via the oriented energy filtering,
(1). In the present implementation, six different space-
time orientations are made explicit, corresponding to

1Strictly, Rayleigh’s theorem is stated with infinite frequency
domain support on summation.

2Depending on the spacetime orientation sought, êx can be
replaced with another axis to avoid an undefined vector.



static (no motion/orientation orthogonal to the image
plane), leftward, rightward, upward, downward motion
(one pixel/frame movement), and flicker/infinite mo-
tion (orientation orthogonal to the temporal axis); al-
though, due to the relatively broad tuning of the filters
employed, responses arise to a range of orientations
about the peak tunings.

Finally, the marginalized energy measurements, (4),
are confounded by the local contrast of the signal and
as a result increase monotonically with contrast. This
makes it impossible to determine whether a high re-
sponse for a particular spacetime orientation is indica-
tive of its presence or is indeed a low match that yields
a high response due to significant contrast in the signal.
To arrive at a purer measure of spacetime orientation,
the energy measures are normalized by the sum of con-
sort planar energy responses at each point,

Ên̂i
(x) = Ẽn̂i

(x)/
( M∑

j=1

Ẽn̂j
(x) + ε

)
, (5)

where M denotes the number of spacetime orienta-
tions considered and ε is a constant introduced as a
noise floor and to avoid instabilities at points where
the overall energy is small. As applied to the six ori-
ented, appearance marginalized energy measurements,
(4), Eq. (5) produces a corresponding set of six normal-
ized, marginalized oriented energy measurements. To
this set a seventh measurement is added that explicitly
captures lack of structure via normalized ε,

Êε(x) = ε/

( M∑
j=1

Ẽn̂j
(x) + ε

)
, (6)

to yield a seven dimensional feature vector at each
point in the image data. (Note that for loci where
oriented structure is less apparent, the summation in
(6) will tend to 0; hence, Êε approaches 1 and thereby
indicates relative lack of structure.)

Conceptually, (1) - (6) can be thought of as taking
an image sequence and carving its (local) power spec-
trum into a set of planes, with each plane correspond-
ing to a particular spacetime orientation, to provide
a relative indication of the presence of structure along
each plane or lack thereof in the case of a uniform inten-
sity region as captured by the normalized ε, (6). This
orientation decomposition of input imagery is defined
pointwise in spacetime. For present purposes, it is used
to define spatiotemporally dense 3D, (x, y, t), action
templates from an example video (with each point in
the template associated with a 7D orientation feature
vector) to be matched to correspondingly represented
videos where actions are to be spotted.

The constructed representation enjoys a number of
attributes that are worth emphasizing. (i) Owing to
the bandpass nature of the Gaussian derivative filters

(1), the representation is invariant to additive photo-
metric bias in the input signal. (ii) Owing to the divi-
sive normalization (5), the representation is invariant
to multiplicative photometric bias. (iii) Owing to the
marginalization (4), the representation is invariant to
changes in appearance manifest as spatial orientation
variation. Overall, these three invariances result in a
robust pattern description that is invariant to changes
that do not correspond to dynamic variation (e.g., dif-
ferent clothing), even while making explicit local ori-
entation structure that arises with temporal variation
(single motion, multiple motion, temporal flicker, etc.).
(iv) Owing to the oriented energies being defined over
a spatiotemporal support region, (1), the representa-
tion can deal with input data that are not exactly spa-
tiotemporally aligned. (v) Owing to the distributed na-
ture of the representation, foreground clutter can be ac-
commodated: Both the desirable action pattern struc-
ture and the undesirable clutter structure can be cap-
tured jointly so that the desirable components remain
available for matching even in the presence of clutter.
(vi) The representation is efficiently realized via linear
(separable convolution, pointwise addition) and point-
wise non-linear (squaring, division) operations [6].

2.2. Spacetime template matching
To detect actions (as defined by a small template

video) in a larger search video, the search video is
scanned over all spacetime positions by sliding a 3D
template over every spacetime position. At each posi-
tion, the similarity between the oriented energy distri-
butions (histograms) at the corresponding positions of
the template and search volumes are computed.

To obtain a global match measure, M(x), between
the template and search videos at each image position,
x, of the search volume, the individual histogram sim-
ilarity measurements are summed across the template:

M(x) =
∑
u

m[S(u),T(u − x)], (7)

where u = (u, v, w) ranges over the spacetime support
of the template volume and m[S(u),T(u − x)] is the
similarity between local distributions of the template,
T, and the search, S, volumes. The global similarity
measure peaks represent potential match locations.

There are several histogram similarity measures that
could be used [21]. Here, the Bhattacharyya coeffi-
cient [2] is used, as it takes into account the summed
unity structure of distributions (unlike Lp-based match
measures) and yields to efficient implementation (see
Section 2.2.2). The Bhattacharyya coefficient for two
histograms P and Q, each with B bins, is defined as

m(P,Q) =
B∑

b=1

√
PbQb, (8)



with b the bin index. This measure is bounded below
by zero and above by one, with zero indicating a com-
plete mismatch, intermediate values indicating greater
similarity and one complete agreement. Significantly,
the bounded nature of the Bhattacharyya coefficient
makes it robust to small outliers (e.g., as might arise
during occlusion in the present application).

The final step consists of identifying peaks in the
similarity volume, M , where peaks correspond to volu-
metric regions in the search volume that match closely
with the template dynamics. The local maxima in the
volume are identified via non-maxima suppression. In
the experiments, the volumetric region of the template
centered at the peak is used for suppression.

2.2.1 Weighting template contributions

Depending on the task, it may be desirable to weight
the contribution of various regions in the template dif-
ferently. For example, one may want to emphasize
certain spatial regions and/or frames in the template.
This can be accommodated with the following modifi-
cation to the global match measure:

M(x) =
∑
u

w(u)m[S(u),T(u − x)], (9)

where w denotes the weighting function. In some sce-
narios, it may also be desired to emphasize the contri-
bution of certain dynamics in the template over others.
For example, one may want to emphasize the dynamic
over the unstructured and static information. This can
be done by setting the weight in the match measure,
(9), to w = 1− (Êε + Êstatic), with Êstatic the oriented
energy measure, (5), corresponding to static, i.e., non-
moving/zero-velocity, structure and Êε capturing local
lack of structure, (6). An advantage of the developed
representation is that it makes these types of semanti-
cally meaningful dynamics directly accessible.

2.2.2 Efficient matching

For efficient search, one could resort to: (i) spatiotem-
poral coarse-to-fine search using spacetime pyramids
[23], (ii) evaluation of the template on a coarser sam-
pling of positions in the search volume, (iii) evaluation
of a subset of distributions in the template and (iv)
early termination of match computation. A drawback
of these optimizations is that the target may be missed
entirely. In this section, it is shown that exhaustive
computation of the search measure, (7), can be real-
ized in a computationally efficient manner.

Inserting the Bhattacharyya coefficient, (8), into the
global match measure, (7), and reorganizing by swap-
ping the spacetime and bin summation orders reveals
that the expression is equivalent to the sum of cross-

correlations between the individual bin volumes:
M(x) =

∑
b

∑
u

√
Sb(u)

√
Tb(u − x) =

∑
b

√
Sb �

√
Tb,

(10)
with � denoting cross-correlation, b indexing histogram
bins and u = (u, v, w) ranging over template support.

Consequently, the correlation surface can be com-
puted efficiently in the frequency domain using the
Convolution Theorem of the Fourier transform [12],
where the expensive correlation operations in space-
time are exchanged for relatively inexpensive pointwise
multiplications in the frequency domain:

M(x) = F−1

{∑
b

F{
√

Sb}F
{√

T ′
b

}}
, (11)

with F{·} and F−1{·} denoting the Fourier transform
and its inverse, resp., and T ′

b the reflected template.
In implementation, the Fourier transforms are realized
efficiently by the fast Fourier transform (FFT).

2.3. Computational complexity analysis
Let W{T,S}, H{T,S}, D{T,S} be the width, height

and temporal duration, respectively, of the template,
T, and the search video, S, and B denote the number
of spacetime orientation histogram bins. The complex-
ity of the correlation-based scheme in the spacetime
domain, (10), is O(B

∏
i∈{T,S} WiHiDi). In the case

of the frequency domain-based correlation, (11), the
3D FFT can be realized efficiently by a set of 1D FFTs
due to the separability of the kernel [12]. The compu-
tational complexity of the frequency domain-based cor-
relation is O[BWSHSDS(log2 DS+log2 WS+log2 HS)].

In practice, the overall runtime to compute the en-
tire match volume between a 50×25×20 template and
a 144 × 180 × 200 search video with six spacetime ori-
entations and ε is 26 minutes when computed strictly
in the spacetime domain, (10), and 20 seconds (i.e., 10
frames/sec) when computed using the frequency-based
scheme, (11), with the the computation of the repre-
sentation (Sec. 2.1) taking up 16 seconds of the total
time. These timings are based on unoptimized Matlab
code executing on a 2.3 GHz processor. In compar-
ison, using the same sized input and a Pentium 3.0
GHz processor, [23] report that their approach takes
30 minutes for exhaustive search.

Depending on the target application, additional sav-
ings of the proposed approach can be achieved by
precomputing the search target representation off-line.
Also, since the representation construction and match-
ing are highly parallelizable, real to near-real-time
performance is anticipated through the use of widely
available hardware and instruction sets, e.g., multicore
CPUs, GPUs and SIMD instruction sets.

To recapitulate, the proposed approach is given in



Algorithm 1: Action spotting.
Input: T : Query video, S: Search video, τ : Similarity

threshold
Output: M : Similarity volume, d: Set of bounding

volumes of detected action
Step 1: Compute spacetime oriented energy

representation (Sec. 2.1)

1. Initialize 3D G3 steerable basis.
2. Compute normalized spacetime oriented

energies for T and S, Eq. (1) - (6).
Step 2: Spacetime template matching (Sec. 2.2,

2.2.1 and 2.2.2)

3. (Optional) Weight template representation.
4. Compute M between T and S (Eq. 11).

Step 3: Find similarity peaks (Sec. 2.2)

5. Find global maximum in M .
6. Suppress values around the maximum (set to zero).
7. Repeat 5. and 6. until remaining match scores are

below τ .
8. Centre bounding boxes, d, with size of template at

identified maxima.

Jump Left/Right Spin Left/Right Squat

Figure 2. Aerobics routine. The instructor performs four
cycles of a dance routine composed of directional jumping,
spinning and squatting; each row corresponds to a cycle.

algorithmic terms in Algorithm 1.

3. Empirical evaluation
The performance of the proposed action spotting al-

gorithm has been evaluated on an illustrative set of
test sequences. Matches are represented as a series of
(spatial) bounding boxes that spatiotemporally outline
the action. Unless otherwise stated, the templates are
weighted by 1−(Êε +Êstatic), see (9), to emphasize the
dynamics of the action pattern over the background
portion of the template. The constant ε is empirically
set to 500 for all experiments. All video results and
additional examples are available at: www.cse.yorku.
ca/vision/research/action-spotting.

Figure 2 shows results of the proposed approach on

Figure 3. Multiple actions in the outdoors. (top, middle)
Sample frames for two query templates depicting walking
left and two-handed wave actions. A third template for a
walking right action is derived from mirroring the walking
left template. (bottom) Several example detection results
from an outdoor scene containing the query actions.

an aerobics routine consisting of 806 frames and a res-
olution of 361 × 241 (courtesy of www.fitmoves.com).
The instructor performs four cycles of the routine com-
posed of directional jumping, spinning and squatting.
The first cycle consists of jumping left, spinning right
and squatting while the instructor is moving to her
left, then a mirrored version while moving to her right,
then again moving to her left and concludes moving to
her right. Challenging aspects of this example include,
fast (realistic) human movements and the instructor in-
troducing nuances into each performance of the same
action; thus, no two examples of the same action are
exactly alike. The templates are all based on the first
cycle of the routine. The jumping right and spinning
left templates are defined by mirrored versions of the
jumping left and spinning right, resp. Each template
is matched with the search target, yielding five simi-
larity volumes in total. Matches in each volume are
combined to yield the final detections. All actions are
correctly spotted, with no false positives.

Figure 3 shows results of the proposed approach on
an outdoor scene consisting of three actions, namely,
walking left, walking right and two-handed wave. In
addition, there are several instances of distracting
background clutter, most notably the water flowing
from the fountain. The video consists of 672 frames
with a resolution of 321 × 185. The walk right tem-
plate is a mirrored version of the walk left template.
Similar to the previous example, the matches for each
template are combined to yield the final detections. All
actions are spotted correctly, save one walking left ac-
tion that differs significantly in spatial scale by a factor
of 2.5 from the template; there are no false positives.

Figure 4 shows results of the proposed approach on
two outdoor scenes containing distinct forms of fore-
ground clutter, which superimpose significant unmod-
eled patterning over the depicted actions and thereby
test robustness to irrelevant structure in matching.



Figure 4. Foreground clutter. (top) Sample frames for a
one-handed wave query template. Templates for other ac-
tions in this figure (two-handed wave, walking left) are
shown in Fig. 3. (middle) Sample walking left and one-
handed wave detection results with foreground clutter in
the form of local lighting variation caused by overhead
dappled sunlight. (bottom) Sample two-handed wave de-
tection results as action is performed beside and behind
chain-linked fence. Foreground clutter takes the form of
superimposed static structure when action is behind fence.

The first example contains foreground clutter in the
form of dappled sunlight with the query actions of
walking left and one-handed wave. The second ex-
ample contains foreground clutter in the form of su-
perimposed static structure (i.e., pseudo-transparency)
caused by the chain-linked fence and the query action of
two-handed wave. The first and second examples con-
tain 365 and 699 frames, resp., with the same spatial
resolution of 321 × 185 pixels. All actions are spotted
correctly; there are no false positives.

For the purpose of quantitatively evaluating the
proposed approach, action spotting performance was
tested on the publicly available CMU action data set
[15]. The data set is comprised of five action cate-
gories, namely “pick-up”, “jumping jacks”, “push el-
evator button”, “one-handed wave” and “two-handed
wave”. The total data set consists of 20 minutes of
video containing 109 actions of interest with 14 to 34
testing instances per category performed by three to six
subjects. The videos are 160×120 pixels in resolution.
In contrast to the widely used KTH [22] and Weizmann
[11] data sets which contain relatively uniform intensity
backgrounds, the CMU data set was captured with a
handheld camera in crowded environments with mov-
ing people and cars in the background. There are large
variations in the performance of the target actions, in-
cluding their distance with respect to the camera.

Results are compared with ground truth labels in-
cluded with the CMU data set. The labels define the
spacetime positions and extents of each action. For
each action, a Precision-Recall (P-R) curve is generated
by varying the similarity threshold between 0.6 to 0.97:
Precision = TP/(TP + FP ) and Recall = TP/nP ,

where TP is the number of true positives, FP is the
number of false positives and nP is the total number
of positives in the data set. In evaluation, the same
testing protocol as in [15] is used. A detected action is
considered a true positive if it has a (spacetime) volu-
metric overlap greater than 50% with a ground truth
label. The same action templates from [15] are used,
including the provided spacetime binary masks to em-
phasize the action over the background.

Figure 5 shows P-R curves for each action with rep-
resentative action spotting results. The blue curves
correspond to the proposed approach, while the red and
green curves are results from two baseline approaches
(as reported in [15]), namely parts-based shape plus
flow [15], and holistic flow [23], resp. In general, the
proposed approach achieves significantly superior per-
formance over both baselines, except in the case of two-
handed wave. Two-handed wave is primarily confused
with one-handed wave, resulting in a higher false pos-
itive rate and thus lower precision; nevertheless, the
proposed approach still outperforms holistic flow over
most of the P-R plot for this action.

4. Discussion and summary
The main contribution of this paper is the represen-

tation of visual spacetime via spatiotemporal orienta-
tion distributions for the purpose of action spotting. It
has been shown that this tack can accommodate vari-
able appearance of the same action, rapid dynamics,
multiple actions in the field-of-view and is robust to
scene clutter (both foreground and background), while
being amenable to efficient computation.

A current limitation of the proposed approach is the
use of a single monolithic template for any given action.
This choice limits the ability to generalize across the
range of observed variability as an action is depicted
in natural conditions. Large geometric spatial (e.g.,
scale) and temporal (e.g., action execution speed) de-
formations are not currently handled but may be ad-
dressed partly through the use of a multi-scale (space-
time) framework. Additional sources of natural vari-
ability include deviations due to local differences in
action execution (e.g., performance nuances) and an-
thropomorphic attributes (e.g., height and shape). Re-
sponse to these variations motivates future investiga-
tion of deformable action templates (e.g., parts-based,
cf. [15]), which will allow for flexibility in matching
template (sub)components. Also, false detections may
be reduced through the integration of complementary
cues, e.g., shape. Along these lines, it is interesting to
note that the presented empirical results attest that the
approach already is robust to a range of deformations
between the template and search target (e.g., modest
changes in spatial scale, rotation and execution speed
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Figure 5. Precision-Recall curves for CMU action data set. (top) Precision-Recall plots; blue curves correspond to the
proposed approach, and red and green to the baselines proposed in [15] (shape+flow parts-based) and [23] (holistic flow),
resp., as reported in [15]. (bottom) Corresponding example action spotting results recovered by the proposed approach.

as well as individual performance nuances). Such ro-
bustness owes to the relatively broad tuning of the ori-
ented energy filters, which discount minor differences
in spacetime orientations between template and target.

In summary, this paper has presented an efficient ap-
proach to action spotting using a single query template;
there is no need for extensive training. The approach
is founded on a distributed characterization of visual
spacetime in terms of 3D, (x, y, t), spatiotemporal ori-
entation that captures underlying pattern dynamics.
Empirical evaluation on a broad set of image sequences,
including a quantitative comparison with two baseline
approaches on a challenging public data set, demon-
strates the potential of the proposed approach.
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