
Review of
Action Recognition and Detection

Methods

Soo Min Kang and Richard P. Wildes

Department of Electrical Engineering and Computer Science

York University

Toronto, Ontario

Canada

ar
X

iv
:1

61
0.

06
90

6v
2

 [
cs

.C
V

]
 1

 N
ov

 2
01

6

Abstract

In computer vision, action recognition refers to the act of classifying an action that
is present in a given video and action detection involves locating actions of interest
in space and/or time. Videos, which contain photometric information (e.g. RGB,
intensity values) in a lattice structure, contain information that can assist in iden-
tifying the action that has been imaged. The process of action recognition and
detection often begins with extracting useful features and encoding them to ensure
that the features are specific to serve the task of action recognition and detection.
Encoded features are then processed through a classifier to identify the action class
and their spatial and/or temporal locations. In this report, a thorough review of
various action recognition and detection algorithms in computer vision is provided
by analyzing the two-step process of a typical action recognition and detection al-
gorithm: (i) extraction and encoding of features, and (ii) classifying features into
action classes. In efforts to ensure that computer vision-based algorithms reach the
capabilities that humans have of identifying actions irrespective of various nuisance
variables that may be present within the field of view, the state-of-the-art methods
are reviewed and some remaining problems are addressed in the final chapter.

1

Contents

1 Introduction 4

2 Benchmark Datasets 6
2.1 Testing Protocol . 6
2.2 Static Background . 7

2.2.1 The KTH Dataset . 8
2.2.2 The Weizmann Dataset . 8
2.2.3 MPII Cooking Activities Dataset 9
2.2.4 Discussion . 11

2.3 Dynamic Background . 11
2.3.1 The CMU Crowded Videos Dataset 11
2.3.2 The MSR Action Dataset I, II 13

2.4 Activities . 15
2.4.1 The UC Berkeley Dataset . 15
2.4.2 UCF Sports Dataset . 16
2.4.3 The Olympic Dataset . 17
2.4.4 Sports-1M . 19
2.4.5 Discussion . 20

2.5 Movies . 20
2.5.1 Hollywood1 . 21
2.5.2 Hollywood2 . 21
2.5.3 Discussion . 21

2.6 Home Videos . 22
2.6.1 UCF11 (YouTube Action), UCF50, and UCF101 23
2.6.2 ActivityNet . 24
2.6.3 Discussion . 28

2.7 The Human Motion Databases . 28
2.7.1 HMDB51 . 28
2.7.2 J-HMDB . 33

2.8 Challenges . 33
2.8.1 THUMOS’ 13 . 33
2.8.2 THUMOS’ 14 . 34
2.8.3 THUMOS’ 15 . 37
2.8.4 ActivityNet Challenge . 38
2.8.5 Final Remarks on the Challenges 39

2

CONTENTS CONTENTS

2.9 Summary . 39

3 Image Representation 43
3.1 Feature Extraction . 43

3.1.1 Sampling Methods . 44
3.1.2 Feature Descriptors . 49

3.2 Encoding Methods . 63
3.2.1 Codebook Generation . 63
3.2.2 Assignment Methods . 66
3.2.3 Pooling and Normalization . 71
3.2.4 Discussion on Encoding Methods 74

3.3 Feature Post-processing . 76
3.4 Final Remarks . 77

4 Classification 78
4.1 Comparison Metrics . 78
4.2 Deterministic Models . 83

4.2.1 Lazy Learners . 84
4.2.2 Eager Learners . 85

4.3 Probabilistic Models . 87
4.3.1 General Classifiers . 87
4.3.2 Temporal State-Space Classifiers 92

4.4 Final Remarks . 96

5 Current Status 97
5.1 Current Trends . 97
5.2 Open Problems . 101

Appendix A Related Fields 104

References 107

3

Chapter 1

Introduction

Videos have become a vital component of our lives as it contains important informa-
tion about the world. Its information has served humans in various domains: from
security to robotics to entertainment and many more. The practicality of videos
have led to immense advancements for video recording, viewing, and distribution.
One major drawback of such availability, however, is the overwhelming amount of
videos that are produced for viewing and analysis by humans. An alternative to
this tedious task is to use machines to automatically extract useful information in
a video. Consequently, detecting and localizing human actions has been a topic of
high interest in computer vision for many years.

Various terms (e.g. action recognition, action spotting, event recognition, etc.)
have been coined to describe similar tasks. Thus, it is important that we define
the terms precisely to avoid any misunderstandings. First, we must distinguish the
difference between an action and an event. An action refers to motion created by
the human body, which may or may not be cyclic. An event is composed of mul-
tiple primitive actions and can involve more than a single individual. While ‘run’
and ‘jump’ are some examples of cyclic and non-cyclic actions, respectively, ‘hurdle’
would be an example of an event since it can be broken down into two primitive
actions: ‘run’ and ‘jump’. Second, we must identify the similarities and differences
between the following terms: recognition, classification, detection, localization, and
spotting. Action recognition and classification are terms that are used interchange-
ably to describe the act of categorizing an action in a clip to one of the pre-defined set
of actions. Action detection, localization, and spotting are also synonymous terms,
which aim to determine the action and its location (in space and/or time). In this
survey, we focus on actions rather than events, and both recognition and detection
algorithms will be studied.

With the emergence of wearable cameras (e.g. GoPro and Google Glass), first-
person action recognition has also been of interest to many in the computer vi-
sion community. First- and third-person action recognition algorithms are two very
closely related tasks. However, there is a significant difference between the two.
First-person action recognition involves determining the action executed by the per-

4

CHAPTER 1. INTRODUCTION

son wearing the camera from an egocentric viewpoint. Third-person action recog-
nition, on the other hand, involves determining the action executed by a person as
captured by someone other than the actor. This difference results in contrasting
datasets, actions of interest, and viewpoints. Thus, we emphasize here that this
paper primarily reviews third-person action recognition and detection algorithms.
First-person action recognition algorithms along with a select few other related fields
of action recognition and detection are briefed in Appendix A.

To identify the action class of a given video, features must be extracted from a
video and encoded to enter a classifier (see Figure 1.1). In this report, benchmark
datasets that appear in the field of action recognition and detection will be surveyed
in Chapter 2. A variety of ways to encode discriminative features in videos followed
by various classification methods that have appeared in the action recognition and
detection literature will be studied in Chapters 3 and 4, respectively. Finally, some
recent state-of-the-art algorithms in action recognition and detection as well as some
outstanding challenges that remain in the field will be addressed in Chapter 5 to
conclude the report.

Figure 1.1: General stages of a typical action recognition and detection algorithm.
A video containing an action (e.g. slipping and falling) is inserted into the system.
Features are extracted and encoded to represent the input video. The encoded
features are processed by a classifier to output the class of the action (e.g. ‘slip
and fall’) for action recognition and its spatiotemporal coordinates (e.g. (x, y, t) =
(235, 217, 344)) for action detection algorithms. The input (raw video) and the
output (class label + spatiotemporal coordinates) of the system are marked in red
while the intermediate processes are marked in blue.

5

Chapter 2

Benchmark Datasets

With the growing popularity of various action recognition and detection algorithms,
it is important to understand the comparative and absolute strengths and weaknesses
of each approach. One of the most just ways to draw comparisons is to quantita-
tively evaluate each approach on the same database with the same protocol. Thus,
it is important to survey the commonly used datasets and their key features to un-
derstand the capabilities and limitations of each tested approach [1, 21, 95]. In this
chapter, some common testing protocols will be reviewed, benchmark datasets used
for evaluation in subsequent chapters will be studied, then a quantitative summary
of the datasets will follow. The datasets have been categorized by some common
features that they share and a thorough analysis was conducted for each dataset
by surveying their key characteristics, quantitative summary including the num-
ber of actors, actions, and conditions, video specifications (e.g. spatial resolution,
video duration, frame rate), test protocols, and its intended use (recognition and/or
detection).

2.1 Testing Protocol

To make a fair comparison between algorithms, it is very important to test them
under the same protocol. First, the training, validation, and test data that are
used to evaluate these algorithms must be consistent. As its name suggests, the
purpose of a training set is to train the classifier (i.e. to optimize the parameters
of the classifier (e.g. weights in neural networks)). The validation set, which is
optional, is comprised of data distinct from those in the training set. It is used to
make adjustments on the selected model such that the algorithm can perform well
on both the training and the validation set. A validation set often is used to find
the most optimal hyperparameters (e.g. number of hidden units, length of training,
training rate in neural networks) for the model. The model that performs the best
on the training and validation sets is finally assessed using the test set to measure
the performance of the overall system [31]. Separating a dataset into three disjoint
sets (training, validation, and testing) allows researchers to tune their system and
estimate the error simultaneously.

6

2.2 Static Background CHAPTER 2. BENCHMARK DATASETS

Second, the method of splitting a dataset into training, validation, and test
must be uniform. There are three general ways to divide a set [31]: (i) using a
pre-defined split, (ii) through n-fold cross-validation, and (iii) through leave-one-
out cross-validation. The pre-defined split separates the dataset into two (or three)
uneven components: training and testing (and validation), which is specified by the
authors of the dataset. The n-fold cross-validation divides the dataset into n mu-
tually exclusive equal-sized folds. Videos in n− 1 folds, which is approximately n−1

n

videos of the entire set, are used for training, and the remaining fold, approximately
1
n

videos, is used for testing. This process is repeated n times such that all clips are
used once for testing. The average error rate of each fold is the estimated error rate
of the classifier. The leave-one-out cross-validation is a special instance of cross-
validation, where each removed sequence is compared to the remaining sequences.
Leave-one-out is computationally expensive, but it determines the most accurate
estimate of a classifier’s error rate.

Third, a single quantitative measure should be used for comparison. To evaluate
how an action recognition algorithm performs with respect to each action class, an
interpolated average precision (AP) can be used. AP is defined as:

AP (c) =

∑n
k=1 (P (k)× rel(k))∑n

k=1 rel(k)
(2.1)

for test class c, where n is the total number of videos, P (k) is the precision at cutoff
k of the list, and rel(k) is an indicator function which equals 1 if the video ranked
k is a true positive and 0 otherwise. The denominator in (2.1) represents the total
number of true positives in the list. The overall performance of the system can be
evaluated using the mean average precision (mAP) measure, which is defined as:

mAP =
1

C

C∑
c=1

AP (c), (2.2)

where C is the total number of test classes (i.e. C = 101 for UCF101). To de-
termine whether the prediction should be considered a true or false positive for a
detection algorithm, a threshold value can be associated with the intersection-over-
union (IoU) to accept or reject a detected result. That is, if o denotes IoU between
the predicted location, Lp, and the ground truth location, Lgt, then o can be written
mathematically as:

o =
Lp ∩ Lgt
Lp ∪ Lgt

, (2.3)

and Lp is considered correct if o ≥ κ for some constant κ.

2.2 Static Camera with Clean Background

One of the earliest goals in action recognition was to classify the action of a single
individual in a video given a set of actions. Thus, a benchmark dataset containing

7

2.2 Static Background CHAPTER 2. BENCHMARK DATASETS

a heterogeneous set of actions with systematic variations of parameters was in great
demand. The KTH and Weizmann datasets met these requirements and became
two of the earliest standard datasets of which to test action recognition algorithms.
These datasets share a common characteristic of actors performing the actions in
front of a simple background recorded with a static camera. Here, KTH, Weizmann,
and the more recent MPII Cooking Activities datasets will be surveyed.

2.2.1 The KTH Dataset

The efforts to create a non-trivial and publicly available dataset for action recog-
nition was initiated at the KTH Royal Institute of Technology in 2004. The KTH
dataset [148] is one of the most standard datasets, which contains six actions: walk,
jog, run, box, hand-wave, and hand clap (see Figure 2.1). To account for perfor-
mance nuance, each action is performed by 25 different individuals, and the setting
is systematically altered for each action per actor. Setting variations include: out-
door (s1), outdoor with scale variation (s2), outdoor with different clothes (s3), and
indoor (s4). These variations test the ability of each algorithm to identify actions
independent of the background, appearance of the actors, and the scale of the actors.

The KTH dataset contains 6 actions performed by 25 individuals in 4 different
settings (6 actions × 25 actors × 4 settings) resulting in a total of 600 clips1.
Each clip contains multiple instances of a single action and is recorded on a static
camera with a frame rate of 25 frames per second (fps). The videos were down-
sampled to have a spatial resolution of 160×120 pixels and each clip ranges from
8 seconds (204 frames) to 59 seconds (1492 frames) averaging 18.9 seconds. The
test protocol of the KTH dataset divides the videos into training, validation, and
test sets, which contains 8, 8, and 9 actors, respectively. The dataset is useful for
the task of recognition and temporal detection, as the ground truth indicates when
specific actions occur but not where (the location).

2.2.2 The Weizmann Dataset

The following year after the KTH dataset was released, the Weizmann Actions as
Space-Time Shapes dataset (or the Weizmann dataset [14]) at the Weizmann Insti-
tute of Science in the Department of Computer Science and Applied Mathematics in
Israel also became available in the field of action recognition. The Weizmann dataset
contains more actions than the KTH (bend, wave one hand, wave two hands, jump-
ing jack, jump in place on two legs, jump forward on two legs, walk, run, skip, and
gallop sideways (see Figure 2.2)), but each action is performed by fewer individuals.
Nevertheless, performance by nine individuals is enough to take into consideration
the nuance between individuals. The actors repeat most actions, namely skip, jump,
run, gallop sideways, walk, in opposite directions to account for the asymmetry of
these actions. Like the KTH dataset, the videos in this dataset are recorded using

1A clip of person 13 performing hand clap in the outdoor with different clothes (s3) setting is
missing in the KTH dataset resulting in a total of 599 clips instead of 600.

8

2.2 Static Background CHAPTER 2. BENCHMARK DATASETS

Figure 2.1: The KTH Dataset. The KTH dataset contains six different actions
(left-to-right): walk, jog, run, box, hand-wave, and hand clap; taken at four dif-
ferent settings (top-to-bottom): outdoor (s1), outdoor with scale variation (s2),
outdoor with different clothes (s3), and indoor (s4). Redrawn from [148].

a static camera on a uniform background. The actors move horizontally across the
frame, maintaining the consistency in the size of the actor as they perform each
action.

The Weizmann dataset contains 10 actions performed by 9 individuals (10 actions
× 9 actors) resulting in a total of 90 clips2. Each clip contains multiple instances
of a single action. Each clip was recorded on a static camera with 50 fps, but has
been deinterlaced to 25 fps. The videos have a spatial resolution of 180×144 pixels
and each clip ranges from 1 second (36 frames) to 5 seconds (125 frames) averaging
3.66 seconds. The recommended testing protocol for using the Weizmann dataset is
to perform a leave-one-out procedure. Although the intended use of the dataset is
for action recognition, it is also useful for the task of detection, as the ground truth
are silhouette masks, which can be applied to extract both spatial and temporal
information of the action.

2.2.3 MPII Cooking Activities Dataset

A group from the Max Planck Institute for Informatics (MPII) compiled the MPII
Cooking Activities [141] and its extension MPII Cooking 2 [142] datasets, which
consist of actions related to cooking. The goal of these datasets is to distinguish
between fine-actions, which is a very challenging task since there is high intra-class

2Select actions (run, skip, and walk) by one of the individuals, Lena, are split into two clips
resulting in 10 clips per action instead of 9. Thus, there are a total of 93 clips instead of 90.

9

2.2 Static Background CHAPTER 2. BENCHMARK DATASETS

Figure 2.2: The Weizmann Dataset. The Weizmann dataset contains ten actions
(left-to-right, top-to-bottom): bend, jump in place on two legs (P-jump), wave two
hands (wave2), run, jump forward on two legs (jump), jumping jack (jacks), walk,
wave one hand (wave1), skip, and gallop sideways (side). Redrawn from [14].

variation (e.g. peeling a carrot vs. peeling a pineapple) and low inter-class varia-
tion (e.g. mixing vs. stirring or dicing vs. slicing). Participants, whose cooking
skills range from beginner to amateur chefs, were instructed to cook one to six of
pre-defined dishes (e.g. fruit salad) for the MPII Cooking dataset. The individuals
were not given a specific recipe to follow. As a result, each individual used different
ingredients to prepare each dish and very dissimilar videos were obtained. For each
cooking video, actions (e.g. cut, peel) were annotated. A list of the 14 (and 59
additional) pre-defined dishes and the annotated 65 (and 67) actions for the MPII
Cooking Activities (and MPII Cooking 2) dataset are listed in Table 2.1 (and 2.2).

The MPII Cooking Activity dataset contains 12 subjects, where 7 of the subjects
are used to perform leave-one-out cross-validation. That is, one of the subjects are
removed from training, and the other 11 are used and this process is repeated 7 times.
The MPII Cooking 2 dataset contains 30 subjects in 273 videos. The dataset is split
into 201 training, 17 validation, and 42 testing with no overlap between the subjects.
The training, validation, and test splits do not sum to the full dataset because for
all composite actions in the testing set, the authors ensured that there were at least
3 training and validation videos from the same actor. Since some subjects had
less than 3 training or validation videos, some test subjects were not used. Each
video was recorded on a mounted camera attached to the ceiling, recording the actor
working at the counter from the frontal view. The videos in both datasets have a
spatial resolution of 1624× 1224 with a frame rate of 29.4 fps, and the duration of
the videos in the MPII Cooking 2 dataset ranges from 2 minutes and 44 seconds
to 24 minutes and 34 seconds for a total of 8 hours and 19 minutes. Both datasets
are useful for the task of action recognition as well as detection. Average precision
(AP) is computed to compare per class results and mean average precision is used
to report the overall performance of the algorithm on the datasets. The mid-point

10

2.3 Dynamic Background CHAPTER 2. BENCHMARK DATASETS

criterion is used to decide the correctness of the detection. That is, if the mid-point
of the detection is within the ground truth, then it is considered correct.

2.2.4 Discussion

The KTH and Weizmann datasets set a good stepping stone for the field of action
recognition through their heterogeneous selection of actions and systematic varia-
tions in its parameters. The controlled settings, such as absence of occlusion and
clutter, limited variations in illumination and camera motion, allow these datasets
to be ideal for standard testing. Unfortunately, good performance on the KTH and
Weizmann datasets does not suffice to determine the algorithm’s proficiency in real-
world videos due to the richness and complexity of the videos in the real-world. In
fact, while state-of-the-art action recognition algorithms routinely achieve greater
than 90% recognition accuracy on these datasets, they perform far less well on the
more naturalistic datasets that are to be introduced in the remainder of this chap-
ter. For this reason, strong performance on the KTH and Weizmann datasets is no
longer of much interest in the field.

The MPII Cooking 2 dataset shifts the focus of recognizing full-body movements
(e.g. run, jump) to classifying actions with small motions. This fine-grained catego-
rization can assist in differentiating visually similar activities that frequently occur
in daily living (e.g. hug vs. hold someone and throw in garbage vs. put in drawer).
The MPII Cooking 2 dataset also provides data for the often neglected but more
challenging and realistic temporal detection task.

2.3 Still Camera with Background Motion

To accommodate the lack of naturalistic settings in the KTH and Weizmann datasets,
in particular the clean nature of the background, the next step was to test algorithms
on videos with a dynamic background. In this section, the CMU Crowded Videos
dataset and the MSR Action Dataset I, II, which contain videos with background
motion and clutter will be examined. Dynamic background was obtained by record-
ing videos in environments with moving cars and people.

2.3.1 The CMU Crowded Videos Dataset

A group from Carnegie Mellon University (CMU) was one of the first to assemble
a dataset, called the CMU Crowded Videos Dataset [76], for the action recognition
and detection tasks that contain background motion. The CMU Crowded Videos
Dataset focuses on five actions: pick-up, one-hand wave, push button, jumping jack,
and two-hand wave. As many of the actions in the CMU Crowded Video dataset
overlap those in the KTH and Weizmann, it was also one of the first cross-datasets
that appeared in the field. That is, one of the training videos that is supplied in

11

2.3 Dynamic Background CHAPTER 2. BENCHMARK DATASETS

Dishes sandwich, salad, fried potatoes, potato pancake, omelet, soup, pizza,
casserole, mashed potato, snack plate, cake, fruit salad, cold drink, and
hot drink

Actions background activity, change temperature, cut apart, cut dice, cut in,
cut off ends, cut out inside, cut slices, cut stripes, dry, fill water from
tap, grate, put on lid, remove lid, mix, move from X to Y, open egg,
open tin, open/close cupboard, open/close drawer, open/close fridge,
open/close oven, package X, peel, plug in/out, pour, pull out, puree, put
in bowl, put in pan/pot, put on bread/dough, put on cutting-board, put
on plate, read, remove from package, rip open, scratch off, screw close,
screw open, shake, smell, spice, spread, squeeze, stamp, stir, strew, take
and put in cupboard, take and put in drawer, take and put in fridge,
take and put in oven, take and put in spice holder, take ingredient
apart, take out from cupboard, take out from drawer, take out from
fridge, take out from oven, take out from spice holder, taste, throw in
garbage, unroll dough, wash hands, wash objects, whisk, and wipe clean

Table 2.1: MPII Cooking Dataset [141]. 14 pre-defined dishes and 65 annotated
actions are listed.

Dishes cooking pasta, juicing {lime, orange}, making {coffee, hot dog, tea},
pouring beer, preparing {asparagus, avocado, borad beans, broccoli and
cauliflower, broccoli, carrot and potatoes, carrots, cauliflower, chilli,
cucumber, figs, garlic, ginger, herbs, kiwi, leeks, mango, onion, orange,
peach, peas, pepper, pineapple, plum, pomegranate, potatoes, scrambled
eggs, spinach, spinach and leeks}, separating egg, sharpening knives,
slicing loaf of bread, using {microplane grater, pestle and mortar, speed
peeler, toaster, tongs}, zesting lemon

Actions add, arrange, change temperature, chop, clean, close, cut apart, cut
dice, cut off ends, cut out inside, cut stripes, cut, dry, enter, fill, gather,
grate, hang, mix, move, open close, open egg, open tin, open, package,
peel, plug, pour, pull apart, pull up, pull, puree, purge, push down, put
in, put lid, put on, read, remove from package, rip open, scratch off,
screw close, screw open, shake, shape, slice, smell, spice, spread, squeeze,
stamp, stir, strew, take apart, take lid, take out, tap, taste, test tem-
perature, throw in garbage, turn off, turn on, turn over, unplug, wash,
whip, wring out

Table 2.2: MPII Cooking 2 Dataset [142]. Additional 41 dishes that were added to
the MPII Cooking 2 dataset and 67 annotated actions are listed. The dishes that
were added are slightly shorter and simpler than the dishes in the MPII Cooking
dataset.

12

2.3 Dynamic Background CHAPTER 2. BENCHMARK DATASETS

this dataset is the exact same video as the two-hand wave in the KTH dataset.

The CMU Crowded Videos dataset contains 5 training videos for each action
and 48 test videos. Each training video is performed by a single individual on a
static background. The test videos contain three to six individuals different from
those in the training set, and contains one to six instances of any three actions in
no particular order (see Figure 2.3). All videos, training and testing, have been
scaled such that the spatial resolution of each video is 120 × 160. All videos have
a frame rate of 30 fps, except the two handed wave, which has a frame rate of 25
fps. The test videos range from 5 to 37 seconds (166 to 1115 frames). The authors
provide spatial and temporal coordinates (x, y, height, width, start, and end frames)
for specified actions as ground truth, giving researchers the option to evaluate the
ability of an algorithm to recognize and detect actions of interest. The detected
action is considered a true positive if there is greater than 50% overlap (in space
and time) with the labelled action.

2.3.2 The MSR Action Dataset I, II

The Microsoft Research Group (MSR) also created action recognition datasets, re-
ferred to as the MSR Action dataset I [219] and MSR Action dataset II [20], where
II is a direct extension of I. These were made available in 2009 and 2010, respectively.
Similar to the CMU Crowded dataset, the purpose of the MSR Action dataset con-
struction was to obtain videos that contain cluttered and/or dynamic backgrounds
[20, 219]. The datasets were assembled to detect 3 actions: clap, (two-)hand wave,
and boxing. The MSR Action datasets are instances of a full cross-dataset3. That
is, to use the test videos in the MSR datasets, the actions must be trained using the
videos in the KTH dataset. Each test sequence contains multiple actions, varies in
the number of participants performing the action, the number of individuals in the
video, and the number of actions that occur simultaneously. Some sequences contain
actions performed by a single individual, some performed by different individuals at
a time, and some performed by two individuals simultaneously.

The MSR Action dataset I contains 24 instances of box, 24 instances of a two-
hand wave, and 14 instances of clap, tallying 62 instances in total for 16 video
sequences. The MSR Action dataset II, on the other hand, contains 81, 71, and 51
instances of box, wave, and clap, respectively, to sum up to a total of 203 instances of
the three actions in a set of 54 videos. All videos in the MSR Action dataset I have a
frame rate of 15 fps, and ranges from 32 to 76 seconds (480 to 1149 frames). Videos
in the MSR Action dataset II, on the other hand, have varying frame rates ranging
from 14 to 15 fps, and are 21 to 85 seconds (321 to 1284 frames) long. All videos
in both the MSR Action dataset I and II have a spatial resolution of 240 × 320,
and are filmed using a static camera. As mentioned before, the videos from the
KTH dataset that correspond to the three actions: box, wave, and clap are used for

3Cross-datasets allow researchers to develop general algorithms deviating from action- or
dataset-specific recognition algorithms.

13

2.3 Dynamic Background CHAPTER 2. BENCHMARK DATASETS

(a) Templates (b) Test Videos

Figure 2.3: The CMU Clutter Dataset. The CMU Clutter dataset contains five
actions (top-to-bottom): pick-up, one-hand wave, push button, jumping jack, and
two-hand wave. Select frames of the (a) templates and (b) test/search set are
shown. The pink silhouettes overlaid on the test sequences are the best matches
obtained from the template action, and the white bounding boxes indicate the
match location of the upper and lower body parts. Redrawn from [76].

training, and the videos provided by MSR are used for testing. Both the spatial and
temporal coordinates of each action instance are provided for ground truth allowing
the dataset to be used for action detection, as well as recognition. Although the
original documentation of the MSR datasets do not specify the evaluation criterion,
many papers that have used the MSR dataset for spatiotemporal action detection
[180] consider the localized result a true positive if the IoU (2.3) between the ground
truth data and the detected result is greater than or equal to some constant κ, where
κ = 0.2 [173] and κ = 0.5 [180].

14

2.4 Activities CHAPTER 2. BENCHMARK DATASETS

Figure 2.4: KTH vs. MSR. Comparison between the KTH dataset (top row) and
the MSR dataset (bottom row) for actions boxing, two-hand wave, and clap (left-
to-right). Redrawn from [20].

2.4 Action Recognition in Activity Videos

Along with many other videos, there are also plentiful sports and performance videos
online that require categorization for accessible browsing and organization. A group
from UC Berkeley collected videos from various sources to gather clips that fre-
quently appear in ballet, tennis, and soccer [34]. This marked the beginning stages
of collecting videos from multiple angles and moving cameras. In the following sec-
tion, four activity-related action recognition/detection datasets will be introduced:
the UC Berkeley Sports Dataset, the UCF Sports dataset, the Olympic Dataset,
and Sports-1M.

2.4.1 The UC Berkeley Dataset

The UC Berkeley dataset consists of videos from three types of activities: ballet,
tennis, and soccer. The ballet videos were collected from instructional videos, which
contain four professional ballet dancers (two ballerinas and two ballerinos) perform-
ing mostly standard ballet moves. 16 ballet actions (standard moves) were chosen
for the task of action detection: second position plies, first position plies, releve,
down from releve, point toe and step right, point toe and step left, arms first posi-
tion to second position, rotate arms in second position, degage, arms first position
forward and out to second position, arms circle, arms second to high fifth, arms high
fifth to first, port de dras, right arm from high fifth to right, and port de bra flowy
arms (refer to Figure 2.5a to view select frames of each action). Each action was
choreographed and all videos were filmed with a stationary camera.

Two amateur tennis players playing tennis outdoors were recorded to gather

15

2.4 Activities CHAPTER 2. BENCHMARK DATASETS

videos for the tennis portion of the dataset. Videos were filmed on different days at
different courts with slightly different camera positions to test variation in setting
and perspective. Six actions were selected to complete the task of action recognition
in tennis videos, which are: swing, move left, move right, move left and swing, move
right and swing, and stand (refer to Figure 2.5b to see select frames from the tennis
set).

The videos for the soccer component were gathered from footages of the World
Cup games. Among many angles that were available, only wide-angle shots of the
playing field were collected. This angle forces each human figure to span 30 × 30
pixels on average, which is coarse for a video with a resolution of 640× 480. Unlike
the ballet and tennis videos, there is camera motion in the videos, a new challenge
in the field of action recognition that has yet to have been introduced. The task is
to differentiate between running and walking motions in specific directions. There
are a total of eight categories for the soccer component: run left 45◦, run left, walk
left, walk in/out, run in/out, walk right, run right, and run right 45◦.

Unfortunately, the UC Berkeley dataset is no longer available for use and cannot
be accessed anywhere. Therefore, a quantitative summary of this dataset is omitted.

2.4.2 UCF Sports Dataset

The actions in the UCF Sports [140, 162] dataset were selected based on those that
are typically featured in broadcast television channels, such as BBC and ESPN.
The initial release of the dataset [140] consisted of nine actions: diving, golf swing,
kicking, lifting, horseback riding, running, skateboarding, swinging a baseball bat,
and pole vaulting (see Figure 2.6a). However, in the next release of the dataset
[162], swinging a baseball bat and pole vaulting, had been removed and swinging on
a pommel horse and floor, swinging on parallel bars, and walking have been added
to the second (and final) release of the UCF Sports dataset (see Figure 2.6b). Sim-
ilar to the soccer videos of the UC Berkeley Dataset, the videos in the UCF Sports
dataset contain camera motion and complex backgrounds.

The UCF Sports dataset contains 150 clips ranging from 6 to 22 clips for the ten
actions. Each clip has a frame rate of 10 fps. The spatial resolution of the videos
range from 480×360 to 720×576 and are 2.20 to 14.40 seconds in duration, averaging
6.39 seconds. Two experimental setups for the task of action recognition (leave-one-
out and five-fold cross-validation) and one for action detection (pre-defined split) are
used with this dataset. The authors provide temporal, as well as spatial coordinates
for each action for the ground truth allowing this dataset to be used for both action
recognition and spatiotemporal detection tasks4.

4Although there are 150 clips in the UCF Sports dataset, only 140 clips contain ground truth
data.

16

2.4 Activities CHAPTER 2. BENCHMARK DATASETS

(a) The UC Berkeley Ballet Dataset. Select frames that represent the 16 ballet
actions are shown (left to right): (i) second position plies, (ii) first position plies,
(iii) releve, (iv) down from releve, (v) point toe and step right, (vi) point toe and
step left, (vii) arms first position to second position, (viii) rotate arms in second
position, (ix) degage, (x) arms first position forward and out to second position, (xi)
arms circle, (xii) arms second to high fifth, (xiii) arms high fifth to first, (xiv) port
de dras, (xv) right arm from high fifth to right, and (xvi) port de bra flowy arms.

(b) The UC Berkeley Tennis Dataset. Select frames of tennis player swing, move
left and stand are illustrated amongst the 6 tennis actions: swing, move left, move
right, move left and swing, move right and swing, stand in the UC Berkeley Tennis
Dataset.

(c) The UC Berkeley Soccer Dataset. A frame from a wide-angle shot of the playing
field (left). Illustration of a player walking to the left (centre) and running 45◦ to
the right (right).

Figure 2.5: The UC Berkeley Dataset. The UC Berkeley dataset contains actions
in ballet, tennis, and soccer. Redrawn from [34].

2.4.3 The Olympic Dataset

The Olympic Dataset [121] is a collection of Olympic sports videos extracted from
YouTube. It contains 16 events that can be found in the Olympics: high jump,
long jump, triple jump, pole vault, discus throw, hammer throw, javelin throw,
shot put, basketball layup, bowling, tennis serve, platform (diving), springboard

17

2.4 Activities CHAPTER 2. BENCHMARK DATASETS

(a) UCF Sports I. Select frames for eight of nine actions (left-to-right, then top-to-
bottom): kicking, lifting, golf swing, horseback riding, baseball swing, skateboarding,
pole vaulting, and running from the first version of the UCF Sports Dataset are
displayed. Redrawn from [140].

(b) UCF Sports II. Select frames of ten actions (left-to-right, then top-to-bottom):
diving, golf swing, kicking, lifting, horseback riding, running, skateboarding, swinging
on a pommel horse, swinging on parallel bars, and walking from the latest version of
the UCF Sports Dataset are illustrated. Redrawn from [163].

Figure 2.6: UCF Sports Datasets. Two versions of the UCF Sports Dataset are
illustrated.

18

2.4 Activities CHAPTER 2. BENCHMARK DATASETS

(diving), snatch (weightlifting), clean and jerk (weightlifting) and vault (gymnastics)
(see Figure 2.7), where each event contains approximately 50 sequences on average.
It is suggested that the videos are split into 40:10 training:testing sequences for
each action class as an experimental setup. The specific splits for training and
testing can be found on their website: http://vision.stanford.edu/Datasets/

OlympicSports/. All sequences in this dataset are stored in .seq format, which
requires special toolboxes to read. A summary of the file formats for these videos
is omitted as the toolbox is difficult to use. Using the information obtained to split
the data, this dataset is used to evaluate how accurately an algorithm can classify
an action.

Figure 2.7: The Olympic Dataset. The Olympics Dataset contains 16 actions:
high jump, long jump, triple jump, pole vault, discus throw, hammer throw, javelin
throw, shot put, basketball layup, bowling, tennis serve, platform (diving), spring-
board (diving), snatch (weightlifting), clean and jerk (weightlifting), and vault
(gymnastics) [121].

2.4.4 Sports-1M

The Sports-1M [73] consists of over a million videos from YouTube. The videos in
the dataset can be obtained through the YouTube URL specified by the authors.
Unfortunately, approximately 7% of the videos have been removed by the YouTube

19

http://vision.stanford.edu/Datasets/OlympicSports/
http://vision.stanford.edu/Datasets/OlympicSports/

2.5 Movies CHAPTER 2. BENCHMARK DATASETS

uploaders since the dataset was compiled [118]. This could change the training,
validation, and/or testing set used in different experiments. However, there are still
over a million videos in the dataset with 487 sports-related categories with 1, 000 to
3, 000 videos per category. The videos are automatically labelled with 487 sports
classes using the YouTube Topics API [215] by analyzing the text metadata associ-
ated with the videos (e.g. tags, descriptions). While such large-scale dataset may
be deemed useful to train CNN-based algorithms that are prone to overfitting on
smaller datasets like UCF101 and HMDB51, the Sports-1M dataset must be used
with caution. First, videos are gathered automatically and therefore labels are weak
[41, 142]. Second, approximately 5% of the videos are annotated with more than
one class [73, 118]. Thus, the training video may not portray discriminative features
of specific actions. Third, since users can post duplicate videos on YouTube, the
same video could appear in both the training and testing sets [73].

The spatial resolution of the videos range between 400×240 and 1280×720 pixels
with a duration of 0 to 37, 427 frames. The Sports-1M dataset is split into 70%
training, 10% validation, and 20% testing sets. It is suggested that the videos are
tested using a 10-fold cross-validation. The specific splits for each set can be found on
the author’s website: http://cs.stanford.edu/people/karpathy/deepvideo/.

2.4.5 Discussion

Although these activity datasets have shown to be more difficult due to the presence
of camera motion, the actions presented in these sets have shown to be relatively easy
to identify. That is, by either analyzing the scene independent of the action or a pose
of the actor in a single frame, an algorithm is likely to identify the action correctly
[185]. This holds true because sports are location-specific (i.e. swimming-related
events always occur in water and skiing on snow) and particular poses are only valid
in specific sports (e.g. clean and jerk is specific to weightlifting) [28, 83, 86, 162].

2.5 Action Recognition in Movies

In efforts to create a dataset that meets the demands of applications in the real-
world for action recognition, videos unrestricted of camera motions, scene context,
spatial segmentation, and viewpoints had to be collected. The advent of unrestricted
video dataset began with the collection of individuals “drinking” in movies “Coffee
and Cigarettes” as well as “Sea of Love” [89]. Similarly, videos from eight different
movies were gathered to collect 92 samples of “kissing” and 112 samples of “hit-
ting/slapping” [140]. The datasets extracted from movies gained popularity in the
action recognition community when more actions were added to the datasets. The
two most widely used datasets from movies are Hollywood1 [88] and Hollywood2
[107].

20

http://cs.stanford.edu/people/karpathy/deepvideo/

2.5 Movies CHAPTER 2. BENCHMARK DATASETS

2.5.1 Hollywood1

The Hollywood1 dataset [88] contains eight actions: answer the phone (Answer-
Phone), get out of car (GetOutCar), handshake (HandShake), hug person (HugPer-
son), kiss, sit down (SitDown), sit up (SitUp), and stand up (StandUp) (see Figure
2.8a), extracted from 32 movies. The Hollywood1 dataset is randomly split into two
sets: training and testing with 12 and 20 non-overlapping movies per set, respec-
tively. The training set is further partitioned into automatic and clean datasets. The
automatic training set contains 233 action samples with 239 labels collected via un-
supervised learning of automated script classification. The clean training set, in con-
trast, contains 219 clips with 231 action labels and demonstrates supervised learning.
That is, the clean training set has been manually selected to contain correct samples
of the action classes retrieved from the text classification step. The test set contains
211 clips with 217 action classes, which have been manually selected to discard false
identifiers that arose from the script annotation step. Most clips in this dataset
contain one action, and at most two actions per clip. The specific splits for training
and test can be found on their website: http://www.irisa.fr/vista/actions.
The videos in this dataset have a frame rate from 23 to 25 fps, spatial resolution
from 180 × 320 to 240 × 592, and are 1 (41 frames) to 4 minutes and 48 seconds
(7216 frames) long. The AP (2.1) and mAP (2.2) scores are used to evaluate the
performance of the system.

2.5.2 Hollywood2

In addition to the actions in the Hollywood1 dataset, four new actions (drive a car
(DriveCar), eat, fight a person (FightPerson), and run) were added from 69 movies
to the Hollywood2 dataset [107] (see Figure 2.8b). Furthermore, to determine if
algorithms benefit from drawing correlations between scene context and actions,
ten scene settings: house, road, bedroom, car, hotel, kitchen, living room, office,
restaurant, and shop were also provided in the dataset. The scenes were further
categorized into either exterior (EXT) or interior (INT) scenes. Similar to the
Hollywood1 dataset, the Hollywood2 dataset is split into automatic training, clean
training, and testing sets. Again, the pre-defined splits can be found on the author’s
website: http://www.di.ens.fr/~laptev/actions/hollywood2/. The videos in
this dataset have a frame rate of 23 to 29 fps, a spatial resolution of 224 × 528 to
576 × 720, and a duration ranging from 2 seconds (59 frames) to 8 minutes and
5 seconds (12131 frames). All clips within the dataset are trimmed such that it
contains one of twelve actions. Furthermore, the ground truth data only provide
the action label for each clip. Thus, this dataset is useful for the task of action
recognition and cannot be used for action detection.

2.5.3 Discussion

Both datasets, Hollywood1 and Hollywood2, pose great challenges in the computer
vision community as both databases contain diverse camera views, dynamic back-

21

http://www.irisa.fr/vista/actions
http://www.di.ens.fr/~laptev/actions/hollywood2/

2.6 Home Videos CHAPTER 2. BENCHMARK DATASETS

(a) Hollywood1 Dataset. The Hollywood1 dataset contains eight actions (left-to-
right): answer the phone (AnswerPhone), get out of car (GetOutCar), handshake
(HandShake), hug person (HugPerson), kiss, sit down (SitDown), sit up (SitUp),
and stand up (StandUp). Redrawn from [88].

(b) Hollwood2 Dataset. The Hollywood2 dataset contains twelve actions (left-to-
right): get out of car (GetOutCar), run (Run), sit up (SitUp), drive a car (Drive-
Car), eat (Eat), kiss (Kiss), stand up (StandUp), answer the phone (AnswerPhone),
shake hands (HandShake), fight (FightPerson), sit down (SitDown), and hug (Hug-
Person). Redrawn from [106].

Figure 2.8: Hollywood1 and Hollywood2 Datasets. Select frames of actions in (a)
Hollywood1 and (b) Hollywood2 datasets are illustrated.

ground, foreground clutter, frequent occlusions, and large intra-class variations. Al-
though a plenitude parameter variations are considered, such as camera motion and
clutter, all clips in these datasets are filmed by professional camera crew under
controlled lighting conditions. These conditions are not very representative of the
videos that we would encounter in the real-world. Furthermore, the parameter vari-
ations are not arranged in a systematic way, which brings difficulties in identifying
the exact strengths and weaknesses of any action recognition approach.

2.6 Action Recognition in Home Videos

With over 600 hours of home videos that are uploaded per minute on video-sharing
websites like YouTube [214], categorization of videos is in great demand. Automated
action recognition could be of great assistance in resolving this issue. Home videos
are typically recorded in unconstrained environments, therefore contain diverse vari-

22

2.6 Home Videos CHAPTER 2. BENCHMARK DATASETS

ations, such as random camera motion, poor lighting conditions, foreground clutter,
movement in background, changes in scale, appearance, view points, and limited
focus on the action of interest [139]. Thus, to apply action recognition/detection
algorithms in the real-world, scientists at the Centre for Research in Computer Vi-
sion at the University of Central Florida (UCF) collected videos from YouTube and
other stock footage websites to construct a dataset that is more representative of
real-world situations. Many datasets have been made publicly available by UCF to
the computer vision community for non-commercial research purposes.

2.6.1 UCF11 (YouTube Action), UCF50, and UCF101

Each of the UCF11 (also known as UCF YouTube Action) [96], UCF50 [139], and
UCF101 [163] is an extension of the previous dataset. The videos for each action
are assorted into 25 groups, where each group contains of 4-7 action clips. The clips
are grouped according to common features videos share, such as the person in the
video, background setting, and/or viewpoint.

The original release of the UCF11 dataset contains videos with various spatial
resolution, frame rate, and duration. In the latest release, the frame rate has been
fixed to a constant rate of 29 fps, the spatial resolution ranges between 176 × 144
to 320× 240, and the videos are less than a second (22 frames) to 29 seconds (900
frames) in length. The UCF50 and UCF101 datasets contain a total of 6, 6815and
13, 320 videos, respectively, with at least 100 videos for each action class. All videos
in both the UCF50 and UCF101 dataset have a spatial resolution of 240× 320, and
its frame rates are either 25 or 29 fps. The leave-one-out cross-validation scheme
is employed for all UCF11, UCF50, and UCF101 datasets and an additional exper-
imental setup of train/test split is recommended for the UCF101 dataset. Three
specific train/test splits are suggested for the UCF101 dataset, in which each group
is kept separate such that the clips from the same group are not shared in training
and testing. Each test split has 7 different groups and their respective remaining 18
groups are used for training.

The UCF101 dataset is a compilation of videos with the following actions: Ap-
ply Eye Makeup, Apply Lipstick, Archery, Baby Crawling, Balance Beam, Band
Marching, Baseball Pitch, Basketball Shooting, Basketball Dunk, Bench Press, Bik-
ing, Billiards Shot, Blow Dry Hair, Blowing Candles, Body Weight Squats, Bowl-
ing, Boxing Punching Bag, Boxing Speed Bag, Breaststroke, Brushing Teeth, Clean
and Jerk, Cliff Diving, Cricket Bowling, Cricket Shot, Cutting In Kitchen, Div-
ing, Drumming, Fencing, Field Hockey Penalty, Floor Gymnastics, Frisbee Catch,
Front Crawl, Golf Swing, Haircut, Hammer Throw, Hammering, Handstand Push-
ups, Handstand Walking, Head Massage, High Jump, Horse Race, Horse Riding,
Hula Hoop, Ice Dancing, Javelin Throw, Juggling Balls, Jump Rope, Jumping Jack,
Kayaking, Knitting, Long Jump, Lunges, Military Parade, Mixing Batter, Mopping

5The official report of the UCF50 dataset [139] documents a total of 6676 videos in the UCF50
dataset. However, the downloadable UCF50 dataset contains 6681 videos.

23

2.6 Home Videos CHAPTER 2. BENCHMARK DATASETS

Floor, Nunchucks, Parallel Bars, Pizza Tossing, Playing Guitar, Playing Piano, Play-
ing Tabla, Playing Violin, Playing Cello, Playing Daf, Playing Dhol, Playing Flute,
Playing Sitar, Pole Vault, Pommel Horse, Pull Ups, Punch, Push Ups, Rafting,
Rock Climbing Indoor, Rope Climbing, Rowing, Salsa Spins, Shaving Beard, Shot
put, Skate Boarding, Skiing, Skijet, Sky Diving, Soccer Juggling, Soccer Penalty,
Still Rings, Sumo Wrestling, Surfing, Swing, Table Tennis Shot, Tai Chi, Tennis
Swing, Throw Discus, Trampoline Jumping, Typing, Uneven Bars, Volleyball Spik-
ing, Walking with a dog, Wall Push-ups, Writing On Board, Yo-Yo (see Figure 2.10).
These actions are divided into five groups: human-object interaction, body-motion
only, human-human interaction, playing musical instruments, and sports. The cat-
egorization of each action into the groups are summarized in Table 2.3. The actions
comprised in the UCF11 and UCF50 are summarized in Figures 2.9a and 2.9b.

2.6.2 ActivityNet

ActivityNet [51] is a large-scale video benchmark dataset for human activity under-
standing. Note, some instances of ‘activities’ in the ActivityNet dataset are ‘events’
by the definitions of this document as opposed to actions (see Chapter 1). Nev-
ertheless, it covers a wide-range of complex human actions, with ample samples
per class, that occur in our daily living. The classes are organized semantically
according to social interactions and where the actions would generally take place
(see Table 2.4 for the ActivityNet semantic taxonomy). The actions are categorized
in multiple levels. This hierarchical organization can be useful for (i) algorithms
that are able to exploit hierarchy during model training, and (ii) precise analysis
of actions that are more suited for certain algorithms over others. Two versions
of the ActivityNet dataset have been released: ActivityNet 100 (release 1.2) and
ActivityNet 200 (release 1.3). ActivityNet 100 contains 100 action classes, 4, 819
training videos with 7, 151 instances, 2, 383 validation videos with 3, 582 instances,
and 2, 480 testing videos with the labels withheld for use in future challenges. Activ-
ityNet 200 contains 203 action classes, 10, 024 training videos with 15, 410 instances,
4, 926 validation videos with 7, 654 instances, and 5, 044 testing videos with its labels
withheld as well. The list of actions and the splits can be found on the author’s
website: http://activity-net.org/index.html.

All videos in ActivityNet are obtained from video sharing sites, such as YouTube.
The videos are downloaded at the best quality available, approximately half of which
have HD resolution of 1280× 720. The majority of the videos in the dataset have a
duration between 5 to 10 minutes with a frame rate of 30 fps. The dataset contains
both temporally trimmed and untrimmed videos with an average of 1.41 trimmed
video for each untrimmed video. This allows for classification of (i) trimmed action
recognition, (ii) untrimmed action recognition, and (iii) temporal action detection.
The trimmed action recognition set contains 203 classes of actions with an average
of 193 samples per class, where each video contains a single instance of the action.
Instances from a single video are forced to stay in the same training, validation, or
test sets to avoid data contamination. The untrimmed action recognition set con-

24

http://activity-net.org/index.html

2.6 Home Videos CHAPTER 2. BENCHMARK DATASETS

(a) UCF11 Dataset (b) UCF50 Dataset

Figure 2.9: UCF11 [96] and UCF50 [139]. (a) Actions in the UCF11 dataset in-
clude (top-to-bottom): basketball shooting (b shooting), cycling, diving, golf swing-
ing (t swinging), horse back riding (r riding), soccer juggling (s juggling), swing-
ing, tennis swinging (t swinging), trampoline jumping (t jumping), volleyball spiking
(v spiking), and walking with a dog (g walking). Redrawn from [96]. (b) Actions in
the UCF50 dataset include (left-to-right, then top-to-bottom): Baseball Pitch, Bas-
ketball Shooting, Bench Press, Biking, Billiards Shot, Breaststroke, Clean and Jerk,
Diving, Drumming, Fencing, Golf Swing, High Jump, Horse Race, Horseback Rid-
ing, Hula Hoop, Javelin Throw, Juggling Balls, Jumping Jack, Jump Rope, Kayak-
ing, Lunges, Military Parade, Mixing Batter, Nunchucks, Pizza Tossing, Playing
Guitar, Playing Piano, Playing Tabla, Playing Violin, Pole Vault, Pommel Horse,
Pull Ups, Punch, Push-Ups, Rock Climbing Indoors, Rope Climbing, Rowing, Salsa
Spins, Skate Boarding, Skiing, Ski-jet, Soccer Juggling, Swing, TaiChi, Tennis Swing,
Throwing a Discus, Trampoline Jumping, Volleyball Spiking, Walking with a dog, and
Yo-Yo. Redrawn from [138].

25

2.6 Home Videos CHAPTER 2. BENCHMARK DATASETS

Figure 2.10: UCF101 Dataset [163]. Actions in the UCF101 dataset include (left-
to-right then top-to-bottom): Apply Eye Makeup, Apply Lipstick, Blow Dry Hair,
Brushing Teeth, Cutting In Kitchen, Hammering, Hula Hoop, Juggling Balls, Jump
Rope, Knitting, Mixing Batter, Mopping Floor, Nun chucks, Pizza Tossing, Shav-
ing Beard, Skate Boarding, Soccer Juggling, Typing, Writing On Board, Yo-Yo,
Baby Crawling, Blowing Candles, Body Weight Squats, Handstand Pushups, Hand-
stand Walking, Jumping Jack, Lunges, Pull Ups, Push-Ups, Rock Climbing Indoor,
Rope Climbing, Swing, Tai Chi, Trampoline Jumping, Walking with a dog, Wall
Push-ups, Band Marching, Haircut, Head Massage, Military Parade, Salsa Spins,
Drumming, Playing Cello, Playing Daf, Playing Dhol, Playing Flute, Playing Gui-
tar, Playing Piano, Playing Sitar, Playing Tabla, Playing Violin, Archery, Balance
Beam, Baseball Pitch, Basketball Shooting, Basketball Dunk, Bench Press, Biking,
Billiards Shot, Bowling, Boxing Punching Bag, Boxing Speed Bag, Breaststroke,
Clean and Jerk, Cliff Diving, Cricket Bowling, Cricket Shot, Diving, Fencing, Field
Hockey Penalty, Floor Gymnastics, Frisbee Catch, Front Crawl, Golf Swing, Ham-
mer Throw, High Jump, Horse Race, Horse Riding, Ice Dancing, Javelin Throw,
Kayaking,Long Jump, Parallel Bars, Pole Vault, Pommel Horse, Punch, Rafting,
Rowing, Shot put, Skiing, Skijet, Sky Diving, Soccer Penalty, Still Rings, Sumo
Wrestling, Surfing, Table Tennis Shot, Tennis Swing, Throw Discus, Uneven Bars,
and Volleyball Spiking. Redrawn from [163].

26

2.6 Home Videos CHAPTER 2. BENCHMARK DATASETS

Category Actions

1 Human-Object Interaction Apply eye makeup, apply lipstick, blow
dry hair, brushing teeth, cutting in
kitchen, hammering, hula hoop, juggling
balls, jump rope, knitting, mixing batter,
mopping floor, nun chucks, pizza tossing,
shaving beard, skate boarding, soccer
juggling, typing, writing on board, and
yo-yo

2 Body-Motion Only baby crawling, blowing candles, body
weight squats, handstand push-ups,
handstand walking, jumping jack, lunges,
pull ups, push ups, rock climbing indoor,
rope climbing, swing, tight, trampoline
jumping, walking with a dog, and wall
push-ups

3 Human-Human Interaction band marching, haircut, head massage,
military parade, and salsa spin

4 Playing musical instruments drumming, playing cello, playing dad,
playing dhol, playing flute, playing gui-
tar, playing piano, playing sitar, playing
tabla, and playing violin

5 Sports Archery, balance beam, baseball pitch,
basketball, basketball dunk, bench
press, biking, billiard, bowling, boxing-
punching bag, boxing-speed bag, breast-
stroke, clean and jerk, cliff diving, cricket
bowling, cricket shot, diving, fencing,
field hockey penalty, floor gymnastics,
frisbee catch, front crawl, golf swing,
hammer throw, high jump, horse race,
horse riding, ice dancing, javelin throw,
kayaking, long jump, parallel bars, pole
vault, pommel horse, punch, rafting,
rowing, shot-put, skiing, jets, sky div-
ing, soccer penalty, still rings, sumo
wrestling, surfing, table tennis shot, ten-
nis swing, throw discus, uneven bars,
and volleyball spiking

Table 2.3: UCF101 Dataset categorization [163].

27

2.7 The Human Motion Databases CHAPTER 2. BENCHMARK DATASETS

tains 27, 801 videos belonging to 203 action classes, where each video can contain
more than one activity. The set is randomly divided into 50% training, 25% vali-
dation, and 25% test sets. The temporal action detection set contains 849 hours of
video, where the detection algorithm should identify the start and end frames of all
actions present in the untrimmed test video sequence. Like trimmed and untrimmed
recognition sets, the set is randomly divided into 50% training, 25% validation, and
25% test sets. mAP (2.2) is used to measure the performance of all three tasks.
A detection is considered a true positive if the IoU score (2.3) between a predicted
temporal segment and the ground truth segment is greater than some constant κ.
Authors report results on varying values of κ from 0.1 to 0.5 in increments of 0.1.

2.6.3 Discussion

The UCF101 dataset was one of the most challenging and largest datasets in action
recognition and detection. Recently, the ActivityNet Dataset has taken the role and
has become one of the most difficult for its large-scale and unconstrained charac-
teristic of the videos. Both UCF101 and ActivityNet datasets contain videos that
closely resemble videos that can be found in the real-world. Thus, algorithms that
perform well in these datasets have great potential for use in real-life scenarios.

2.7 The Human Motion Databases

In efforts to collect videos that would capture the complexity of videos found in
movies and videos online, the large Human Motion Database (HMDB51) [83] was
created by collecting videos from various sources, such as movies, YouTube, and
Google videos.

2.7.1 HMDB51

A total of 51 actions were selected for the HMDB51 database, where the actions
were broadly categorized into five groups: 1) general facial actions, 2) facial actions
with object manipulation, 3) general body movements, 4) body movements with
object interaction, and 5) body movements for human interaction (see Table 2.5
and Figure 2.11). There are a total of 6, 766 clips in the HMDB51 dataset with each
action containing at least 102 clips. To test the strengths and weaknesses in context
of various nuisance factors, each video is annotated with a meta tag, which pro-
vides information like camera viewpoint, presence/absence of camera motion, video
quality, number of actors involved in the action, and visible body part (see Table
2.6). Three distinct training and testing splits are suggested for experimentation,
where each split was generated to ensure that the clips from the same video did not
appear in both the training and testing sets while there was an even distribution of
meta tags across the sets. Each split contains 70 training and 30 testing videos with
the excess videos excluded from the split. All the videos in the dataset have been
normalized for a consistent height of 240 pixels and the widths have been scaled

28

2.7
T
h
e
H
u
m
an

M
otion

D
atab

ases
C
H
A
P
T
E
R

2.
B
E
N
C
H
M
A
R
K

D
A
T
A
S
E
T
S

Category Sub-categories Actions

1 Eating and Drinking Eating and Drinking drinking coffee, drinking beer

Food and Drink Preparation preparing pasta, preparing salad, making a sandwich, mixing drinks

Kitchen and Food Clean-up washing dishes

2 Sports, Exercise,
and Recreation

doing aerobics zumba, step-aerobics

Martial arts kickboxing, karate, tai chi

Playing sports high jump, cricket, discus throw, javelin throw, paintball, long jump, bungee
jumping, triple jump, shot put, dodgeball, hammer throw, skateboarding, mo-
tocross, campfire, archery, volleyball, kickball, pole vault,field hockey, basketball
layup

Weightlifting clean and jerk, snatch

Gymnastics pommel horse, balance beam, tumbling, parallel bars, uneven bars

Cardiovascular equipment spinning

Racket sports table tennis, tennis serve, squash, lacrosse, racquetball, badminton

Equestrian sports polo, horseback riding

Climbing, spelunking, caving rock climbing

Water sports springboard diving, sailing, platform diving, windsurfing, water polo, kayaking

3 Socializing, Relax-
ing, and Leisure

Dancing tango, cheerleading, cumbia, breakdancing, belly dancing

Musical Instrument playing bagpipes, harmonica, saxophone, guitar, flute, piano, violin, accordion

Arts and Entertainment ballet

29

2.7
T
h
e
H
u
m
an

M
otion

D
atab

ases
C
H
A
P
T
E
R

2.
B
E
N
C
H
M
A
R
K

D
A
T
A
S
E
T
S

Tobacco and Drug Use smoking hookah, smoking a cigarette

Playing Games hopscotch

4 Personal Care Washing, Dressing, and
Grooming Oneself

putting on makeup, washing face, brushing hair, brushing teeth, doing nails, wash-
ing hands, shaving, shaving legs, removing curlers

Washing, Dressing, and
Grooming

getting a tattoo, piercing, and a haircut

5 Household Activities Household Management wrapping presents

Animals and Pets bathing dogs, grooming horse, walking the dog

Interior Maintenance, Re-
pair, and Decoration

chopping wood, painting

Housework cleaning windows, vacuuming floor, polishing furniture, cleaning shoes, polishing
shoes, ironing clothes, handwashing clothes

Vehicles fixing bicycle

Exterior Maintenance, Re-
pair, and Decoration

shovelling snow

Lawn, Garden, and House-
plants

lawn mowing

Table 2.4: ActivityNet Categorization [51].

30

2.7 The Human Motion Databases CHAPTER 2. BENCHMARK DATASETS

accordingly, ranging between 176 and 592 pixels, to maintain the original aspect
ratio. All videos are trimmed to contain one of 51 actions, and the location of each
action is not provided as a ground truth. Thus, this dataset is useful for testing
classification.

Category Actions

1 General facial actions smile, laugh, chew, talk

2 Facial actions with object
manipulation

smoke, eat, drink

3 General body movements cartwheel, clap hands, climb, climb
stairs, dive, fall on the floor, backhand
flip, hand-stand, jump, pull up, push up,
run, sit down, sit up, somersault, stand
up, turn, walk, wave

4 Body movements with ob-
ject interaction

brush hair, catch, draw sword, dribble,
golf, hit something, kick ball, pick, pour,
push something, ride bike, ride horse,
shoot ball, shoot bow, shoot gun, swing
baseball bat, sword exercise, throw

5 Body movements for human
interaction

fencing, hug, kick someone, kiss, punch,
shake hands, sword fight

Table 2.5: HMDB51 Dataset categorization [83].

Property Labels

1 Visible Body Parts head, upper body, full body, lower body

2 Camera Motion motion, static

3 Camera Viewpoint front, back, left, right

4 Number of People involved
in the Action

single, two, three

5 Video Quality good, medium, ok

Table 2.6: HMDB51 Dataset Meta Tag Labels [83].

31

2.7 The Human Motion Databases CHAPTER 2. BENCHMARK DATASETS

Figure 2.11: HMDB51. Actions in the HMDB51 dataset include (left-to-right):
brush hair, cartwheel, catch, chew, clap, climb, climb stairs, dive, draw sword, dribble,
drink, eat, fall floor, fencing, flic flac, golf, hand stand, hit, hug, jump, kick, kick ball,
kiss, laugh, pick, pour, pull-up, punch, push, push up, ride bike, ride horse, run, shake
hands, shoot ball, shoot bow, shoot gun, sit, sit-up, smile, smoke, somersault, stand,
swing baseball, sword exercise, sword, talk, throw, turn, walk, and wave. Redrawn
from [83].

32

2.8 Challenges CHAPTER 2. BENCHMARK DATASETS

2.7.2 J-HMDB

To better understand and analyze the limitations and identify components of al-
gorithms for improvement on overall accuracy on the HMDB51 dataset, a joint-
annotated HMDB (J-HMDB) dataset has been made available [66]. Among the 51
different human action categories that were collected for the HMDB51 dataset, cat-
egories that mainly contain facial expressions (e.g. smiling), interaction with others
(e.g. shaking hands), and very specific actions (e.g. cartwheels) were excluded. As
a result, 21 classes that involve a single individual performing the action has been
chosen, which includes: brush hair, catch, clap, climb stairs, golf, jump, kick ball,
pick, pour, pull-up, push, run, shoot ball, shoot bow, shoot gun, sit, stand, swing
baseball, throw, walk, and wave.

There are 36 to 55 clips per action class with each clip containing about 15-40
frames, summing to a total of 928 clips in the dataset. Each clip is trimmed such
that the first and last frames correspond to the beginning and end of an action. All
clips have a spatial resolution of 320× 240 with a frame rate of 30 fps. The dataset
is randomly split into three distinct sets for evaluation with the condition that the
clips from the same video file are not used for both training and testing. For each
action category, 70% of the videos are used for training, and 30% for testing with
a relatively even distribution of the meta tags (e.g. camera position, video quality,
motion, etc.). A 2D puppet model for annotation, which represents the human body
with a set of 10 body parts connected by 13 joints (shoulders, elbows, wrists, hips,
knees, ankles, and neck) and 2 landmarks (the face and the core) are provided to
allow researchers to test their algorithms on both the spatiotemporal localization
and recognition of the specified actions.

2.8 Action Recognition and Detection Challenges

In efforts to encourage researchers in the vision community to develop action recog-
nition and detection algorithms that can be effectively and efficiently applied in
natural settings, an international workshop called the THUMOS Challenge took
place annually from 2013 to 2015 and ActivityNet Challenge in 2016 in conjunction
with various major conferences in computer vision [70, 71, 48, 161]. Three THUMOS
challenges: THUMOS’ 13, THUMOS’ 14, THUMOS’ 15, along with the ActivityNet
challenge will be surveyed in this section.

2.8.1 THUMOS’ 13

The very first THUMOS challenge, THUMOS’ 13, which took place in conjunction
with the International Conference on Computer Vision (ICCV) in 2013, consisted of
two tasks: the recognition task and the detection task. Both the recognition and the
detection tasks were based on videos from the UCF101 dataset (see section 2.6.1).
Three training and testing splits were randomly generated such that for each split,
18 of the 25 groups were used as training, and the rest as test data for each action.

33

2.8 Challenges CHAPTER 2. BENCHMARK DATASETS

Each participating team had to submit results to all three training and testing splits
that were provided to qualify for the competition. For evaluation, various low-level
features (e.g. STIP [87], SIFT [98], and DT [186] features (see section 3.1.2)) with
location information, action attributes for the action classes (see Table 2.7), and
bounding box annotations (for the detection task) were provided.

The objective of the recognition task was to predict which action amongst the
101 action classes were present in each test clip. Each team was allowed to sub-
mit multiple runs. 17 teams took part in the challenge, and a total of 30 runs
were submitted. In this competition, 12 teams made use of low-level features (e.g.
(improved) DT feature [186, 188], triangulation of SURF [119], 3D HOG [78] and
HOF [88], and LPM [153]) (see section 3.1.2), and the rest used newly developed
mid-level features (e.g. acton [230], online matrix factorization [19]). The most com-
monly used methods of encoding and pooling were bag-of-words [159] and/or FVs
[62] with a few using spatial/region pooling (see section 3.2). The top 10 performing
algorithms used VLAD [65] and/or FV encoding method along with (improved) DT
features and an SVM classifier. All teams used either the non-linear or linear SVM
for classification with one using neural networks (see section 4.2.2). Even though
action attribute information were provided for all videos, there were no submissions
that made use of the class-level attributes to recognize the test data. The baseline
recognition result reported on the UCF101 data by November of 2012 was 43.9%
[163], and the winner of the THUMOS 2013 challenge achieved an overall accuracy
of 87.46% using VLAD+FV-encoded iDT features with a linear SVM [189], which
is a significant improvement within a year.

The goal of the detection task was to localize the bounding boxes provided in
the test videos and to identify the 24 pre-defined action classes. 10 of the 24 classes
were selected from the UCF11 dataset, which include: basketball shooting, cycling,
diving, golf swing, tennis swing, trampoline jumping, volleyball spiking, and walk-
ing the dog; and 14 additional classes: basketball dunk, cliff diving, cricket bowling,
fencing, floor gymnastics, horseback riding, ice dancing, long jump, pole vault, rope
climbing, salsa spin, skateboarding, skiing, ski-jet, soccer juggling, and surfing; were
added to the challenge. A detected result was considered correct if the action class
was classified correctly and the intersection-over-union (2.3) was greater than or
equal to 0.2. Unfortunately, no team took part in the localization task of the THU-
MOS’ 13 challenge. It is worth noting here that although no team took part in the
detection task of the THUMOS’ 13 challenge, there were algorithms that reported
detection results on other datasets, such as the UCF Sports dataset and the MSR
Action Dataset II [173].

2.8.2 THUMOS’ 14

The second THUMOS challenge, THUMOS’ 14, took place the following year in con-
junction with the 2014 European Conference on Computer Vision (ECCV). Similar
to the previous THUMOS challenge, there were two main tasks in the THUMOS’

34

2.8
C
h
allen

ges
C
H
A
P
T
E
R

2.
B
E
N
C
H
M
A
R
K

D
A
T
A
S
E
T
S

Class Attributes

Body Motion flipping, walking, running, riding, up down, pulling, lifting, pushing, diving, jumping up, jumping forward,
jumping over obstacle, spinning, climbing up, horizontal, vertical up, vertical down, bending

Body Parts Visible head close-up, face close-up, upper body, lower body, full body, one hand, two hands

Number of People one, two, many

Object ball-like, big ball-like, stick-like, rope-like, sharp, circular, cylindrical, musical instrument, portal musical
instrument, animal, boat-like

Outdoor grass, water, ocean/lake, court, sky, street/road, track, general

Indoor pool, office, court, gym, home, track, general

Posture sitting, sitting in front of a table-like object, standing, lying, handstand

Body Parts Used head, hands, arms, legs, foot

Body Part Articulation

Arm one arm motion, two arms motion, synchronized arm motion, alternate arm motion, one arm raised over
head, two arms raised over head, one arm raised chest level, two arms raised chest level, one arm open to
the side, two arms open to the side, one arm down, two arms down, one arm bent, two arms bent, one arm
stretched, two arms stretched, one arm swinging, two arms swinging

Leg synchronized leg motion, alternate leg motion, fold-unfold motion, up-down motion, up-forward motion,
side-stretch motion, one leg raise, two legs raise, legs open to the side, one leg bent, two legs bent, one leg
stretched, two legs stretched

Hand throw-release motion, synchronized hand motion, one hand closed, two hands closed, one hand grab, two
hands grab, one hand open, two hands open

Head facing down, facing up, facing front, facing sideways, straight position, tilted position

Torso down-forward motion, twist motion, bent position, straight up position

Feet touching ground, in air

Table 2.7: The 115 class-level attributes assigned to the 101 actions for the THUMOS’ 13 Challenge [70].

35

2.8 Challenges CHAPTER 2. BENCHMARK DATASETS

14 challenge: the recognition task and the temporal action detection task. The goal
of the recognition task remained the same as the previous year, which was to pre-
dict the presence/absence of an action class in a given sequence. The objective
of the temporal action detection task, however, was to identify when which of the
pre-defined 20 actions had occurred in the test clip without providing the spatial
location. For both tasks, four types of data were provided: training, validation,
background, and test. The training data were videos extracted from the UCF101
dataset, which were temporally trimmed such that each sequence contained one
instance of the action and all irrelevant frames were removed. The other three
parts (validation, background, and test data), on the other hand, were collections of
untrimmed videos. As in the THUMOS’ 13 challenge, pre-computed low-level fea-
ture of the iDT features along with the spatiotemporal information were provided
for all (training, validation, background, and test) datasets. Each team was granted
at most five submissions of the results for each task, where the run with the best
performance was used to rank across other results.

For the action recognition task, the entire UCF101 dataset of temporally trimmed
videos was provided for training. The validation set contained 10 untrimmed videos
for each class tallying 1, 000 videos in total to allow participants to fine-tune their
algorithms and to use as further training data, if necessary. Each validation video
contained a primary action with some containing one or more instances of other
action classes. The background data, which contained 2, 500 clips, were videos rele-
vant to each action, but did not contain an instance of any of the 101 action classes.
For example, a clip of a basketball court without a basketball game taking place
was provided as background data for “basketball dunk”. Background data provided
verification of the absence of action classes. The test data consisted of 1, 574 tem-
porally untrimmed test videos, which contained one or multiple instances of one,
multiple, or none of the action classes were provided as test data. 11 teams took
part in the challenge and 35 runs were submitted. 10 participants used DT features
while 4 used CNNs. In addition, 9 teams used FVs in conjunction with iDT fea-
tures (see section 3.1.2 and section 3.2.2). Beyond low-level features, participants
used various mid-level features such as face, body and eye features, audio, saliency
features, and shot boundary detection. 10 teams used SVM for classification and
one team used extreme learning [57, 181]. Using (2.1) and (2.2), the winner of the
THUMOS’ 14 action recognition challenge achieved an mAP score of 0.71 by using
iDT features with CNN and SVM as a classifier. The THUMOS’ 14 recognition
task was deemed more challenging than the previous year’s as the test videos were
temporally untrimmed, which meant that significant portion of some videos did not
contain any of the 101 actions. Furthermore, variations of instances, where multiple
or no instance of any actions were possibilities in test videos, was another factor
that made the classification task more challenging than the previous year’s. These
added features in the test videos were embedded to the competition to guide the
next generation of action recognition algorithms to be more useful in practical set-
tings.

36

2.8 Challenges CHAPTER 2. BENCHMARK DATASETS

From the task of spatial and temporal detection, the THUMOS’ 14 detection
challenge had been mitigated to temporal detection. The task mitigation led to
computational complexity and annotation alleviation. Instead of 24 action classes
as in the previous year’s challenge, the detection task called for localization of 20
action classes (baseball pitch, basketball dunk, billiards, clean and jerk, cliff diving,
cricket bowling, cricket shot, diving, frisbee catch, golf swing, hammer throw, high
jump, javelin throw, long jump, pole vault, shot put, soccer penalty, tennis swing,
throw discus, and volleyball spike). Similar to the recognition task, four datasets
(training, validation, background, and test) were provided. The training data con-
tained temporally trimmed videos from the UCF101 dataset of the 20 action classes,
200 validation videos with temporal annotations (start and end time) of all instances
of the 20 actions were provided in the validation set, the same set of background
data as in the recognition task were provided for the 20 actions, and 1, 574 tem-
porally untrimmed videos were provided as test data. As in the recognition task,
interpolated AP and mAP metrics were used to measure performance of each action
class and each run, respectively. A detection was considered correct if the IoU score
(2.3) was greater than 0.5 for the predicted time range and ground truth time range.
3 teams took part in the challenge with 11 submissions in total. All three teams uti-
lized the FV-encoded iDT with CNN features and used 1-vs-rest SVM over temporal
windows. The variation amongst the three approaches depended on using either the
early or late fusion of the features, system parameters (e.g. window size, step size,
hard negatives), post-processing (re-scoring, thresholding), and/or combining with
classification scores. The top performing approach, which attained a score of 0.14
was distinguished in the following three ways [128]. First, combining the window’s
detection score with video’s classification score for the same action class. Second,
using additional features such as SIFT, colour moments, CNN, and MFCC. Third,
using ASR in their classification process.

2.8.3 THUMOS’ 15

The third annual THUMOS challenge, THUMOS’ 15, took place in conjunction
with the 2015 Conference on Computer Vision and Pattern Recognition (CVPR).
Identical to previous years’ THUMOS challenges, the THUMOS’ 15 challenge also
comprised of two tasks: the recognition task and the detection task. The objectives
of the recognition and detection tasks remained the same as the THUMOS’ 14 tasks,
to detect the presence/absence of an action in a given clip and to temporally localize
and identify actions in a test video, respectively. Four datasets (training, validating,
background, and testing) were provided, as before. The same temporally trimmed
13, 320 videos from the UCF101 dataset were provided for the recognition task and
select videos for the chosen 20 actions of the localization task were provided in the
training set. 2, 140 and 200 temporally untrimmed validation videos were provided
for the classification and detection tasks, respectively, the same 2, 980 background
videos were provided for both tasks, and 5, 613 temporally untrimmed videos were
provided for test in both tasks.

37

2.8 Challenges CHAPTER 2. BENCHMARK DATASETS

The same evaluation metrics, AP (2.1) and mAP (2.2), as in the THUMOS’
14 challenge, were employed to evaluate the results on each action class and to
evaluate the performance of a single run, respectively. The intersection-over-union
defined overlap as in the previous challenges (2.3) was used, where the detection was
considered correct if the overlap was greater than 0.5. A total of 11 teams partici-
pated in the recognition challenge and 52 runs were submitted. 10 of 11 teams used
iDT features and ranked in the top 10 of the competition. Various other methods
were employed such as deep networks, MFCC, and multi-granularity analysis (VGG,
C3D, iDT, and MFCC). Use of enhanced iDT, multi-granularity analysis (VGG),
CNN (LCD), along with MFCC and ASR features and a combination of SVM and
a logistic regression fusion classifier allowed the winner of the recognition challenge
to attain an mAP score of 0.7384 [207]. Only one team took part in the tempo-
ral action detection challenge for which they utilized FV-encoded iDTs, performed
multi-granular analysis using VGG and FV, embedded the shot boundary detection
method, and used an SVM classifier to attain an mAP score of 0.1830. With such
low participation in the localization task, it is plausible that the datasets for the task
had been too computationally demanding and not enough time had been granted
for submission.

2.8.4 ActivityNet Challenge

In conjunction with CVPR 2016, the ActivityNet Large Scale Activity Recognition
Challenge took place. Similar to the THUMOS challenges, the ActivityNet Chal-
lenge also comprised of two tasks: the classification task and the detection task.
The objective of the classification challenge was to identify the label of the activ-
ities that were present in a given long untrimmed video. The detection challenge
required an additional challenge of identifying the temporal extents of the activities
that were present in the given video. Similar to the THUMOS challenges, pre-
computed features were provided (e.g. ImageNetShuffle and MBH global features,
C3D frame-based features, and agnostic temporal activity proposals).

To evaluate the performance of each algorithm, mAP (equation (2.2)) and top-k
classification accuracy metrics were used. The top-k metric, which measures the
probability of the correct class attaining the top k confidence score for k ∈ Z+,
provides additional information about the algorithm, but was not used to determine
the winner of the challenge. A detection was considered correct if the IoU score (2.3)
was greater than 0.5. Only one submission was permitted per participant. A total
of 24 participants took part in the classification challenge and 6 in the temporal de-
tection challenge. Algorithms that achieved top 10 performance in the classification
challenge either used handcrafted iDT features, deep-learned convolutional features,
or its combination to achieve an mAP score greater than 82.5. The winner of the
untrimmed video classification challenge achieved an mAP score of 93.2 by analyz-
ing two complementary components of a video: visual and auditory information.
The visual system takes an altered two-stream approach adopting the ResNet and
Inception V3 architectures, which are aggregated via top-k pooling and attention

38

2.9 Summary CHAPTER 2. BENCHMARK DATASETS

weighted pooling. The audio system, on the other hand, combines the FV-encoded
standard MFCC features trained on SVMs with audio-based CNNs. Many algo-
rithms in the detection task temporally localized actions by either utilizing (i) the
sliding temporal window approach or (ii) using LSTM-RNNs. The winner of the
action detection challenge achieved an mAP score of 42.5 using VLAD-encoded IDT
combined with C3D features on SVM classifiers.

2.8.5 Final Remarks on the Challenges

In this section, four action recognition and detection challenges that took place in
conjunction with major conferences were examined. A quantitative summary of the
THUMOS’ 13, 14, 15, as well as the ActivityNet challenges are provided in Table 2.8.
In the upcoming challenge, it is projected that the task of action proposal, whose
goal is to retrieve temporal (or spatiotemporal) regions that are likely to contain
actions, will be added. Furthermore, the classification task will be based on a larger
dataset containing approximately 1, 000 action classes with more than 500 samples
per class and the detection task may be extended to the spatiotemporal domain.

2.9 Summary

In this chapter, numerous benchmark datasets have been introduced. Table 2.9
summarizes the key features of the commonly used datasets.

Although significant progress has been made in collecting data to test various
action recognition algorithms, current major datasets are deemed too unrealistic
and/or disorderly. The availability of a systematic dataset that consists of natural-
istic videos is crucial since the next plausible step in action recognition and detection
would be to implement the next generation of algorithms into the real-world. Thus,
in constructing the next benchmark dataset, a set of useful actions that make fre-
quent appearance in security, robotics, entertainment, and health care should be
considered. Furthermore, the parameters should vary in a systematic way to allow
researchers to quickly examine the effect caused by changes in illumination, viewing
direction, scale, clutter, recording setting, and performance nuance.

39

2.9
S
u
m
m
ary

C
H
A
P
T
E
R

2.
B
E
N
C
H
M
A
R
K

D
A
T
A
S
E
T
S

Competition Name Task Datasets No. Videos Additional Comments

THUMOS’ 13

Recognition
Training 13, 320 Same as the UCF101 dataset. 3 splits constructed; each split contains

18 training videos of the 25 groups per action.

Testing 13, 320 Same as the UCF101 dataset. 3 splits constructed; each split contains
7 test videos of the 25 groups per action.

Spatiotemporal Detection
Training - Videos from the UCF101 dataset of select 24 action classes.

Testing - Videos from the UCF101 dataset of select 24 action classes.

THUMOS’ 14

Recognition

Training 13, 320 Temporally trimmed videos from the UCF101 dataset.

Validation 1, 000 Temporally untrimmed data.

Background 2, 500

Testing 1, 574 Temporally untrimmed data. Videos may contain none, one, or multi-
ple instances of a single or multiple action(s).

Temporal Detection

Training - Temporally trimmed videos from the UCF101 dataset.

Validation 200 Temporally untrimmed data.

Background 2, 500

Testing 1, 574 Temporally untrimmed data.

THUMOS’ 15

Recognition

Training 13, 320 Temporally trimmed videos from the UCF101 dataset.

Validation 2, 104 Temporally untrimmed data.

Background 2, 980

Testing 5, 613 Temporally untrimmed data. Videos may contain none, one, or multi-
ple instances of a single or multiple action(s).

Temporal Detection

Training - Temporally trimmed videos from the UCF101 dataset for select 20
actions.

Validation 200 Temporally untrimmed videos.

Background 2, 980

Testing 5, 613 Temporally untrimmed data.

40

2.9
S
u
m
m
ary

C
H
A
P
T
E
R

2.
B
E
N
C
H
M
A
R
K

D
A
T
A
S
E
T
S

ActivityNet

Classification

Training 10, 024 Temporally untrimmed data.

Validation 4, 926 Temporally untrimmed data.

Testing 5, 044 Temporally untrimmed data.

Temporal Detection

Training 10, 024 Temporally untrimmed data.

Validation 4, 926 Temporally untrimmed data.

Testing 5, 044 Temporally untrimmed data.

Table 2.8: Summary of the THUMOS and ActivityNet Challenges [70, 71, 48, 161].

41

2.9
S
u
m
m
ary

C
H
A
P
T
E
R

2.
B
E
N
C
H
M
A
R
K

D
A
T
A
S
E
T
S

Dataset Year No. Actions No. Actors No. Videos Frame Rate (fps) Cam. View Cam. Motion Bckg clutter Task

KTH [148] 2004 6 25 600 25 Frontal/Side No No Recognition, Temporal Detection*

Weizmann [14] 2005 10 9 600 25 Frontal/Side No No Recognition, Spatiotemporal Detection*

MPII Cooking Activities [141] 2012 65 12 44 29.4 Frontal/Side No No Recognition, Temporal Detection

MPII Cooking 2 [142] 2015 67 30 273 29.4 Frontal/Side No No Recognition, Temporal Detection

CMU Crowded Videos [76] 2007 5 6
5 training

25-30 Frontal/Side No Yes Recognition, Spatiotemporal Detection
48 test

MSR Action I [219] 2009 3 10 16 15 Frontal/Side No Yes Spatiotemporal Detection

MSR Action II [20] 2010 3 10+ 54 14-15 Frontal/Side No Yes Spatiotemporal Detection

CMU Sports (Ballet) [34] 16 6 Frontal/Side No No

CMU Sports (Tennis) [34] 2003 6 2 N/A N/A Side No No -

CMU Sports (Soccer) [34] 8 R Multiple Yes Yes

UCF Sports [140, 162] 2008 10 R 150 10 Multiple Yes Yes Spatiotemporal Detection

Olympic Sports [121] 2010 16 R 783 N/A Multiple Yes Yes Recognition

Sports-1M [73] 2014 487 R 1, 133, 158 - Multiple Yes Yes Recognition

Hollywood1 [88] 2008 8 R 475 23-25 Multiple Yes Yes Recognition

Hollywood2 [107] 2009 10 + 6 scenes R 2, 517 23-29 Multiple Yes Yes Recognition

UCF11 (YouTube) [96] 2009 11 R 1, 600 29 Multiple Yes Yes Spatiotemporal Detection

UCF50 [139] 2012 50 R 6, 681† 25 or 29 Multiple Yes Yes Spatiotemporal Detection

UCF101 [163] 2012 101 R 13, 320 25 or 29 Multiple Yes Yes Spatiotemporal Detection

ActivityNet [51] 2015 203 R 19, 994 mostly 30 Multiple Yes Yes Recognition, Temporal Detection

HMDB51 [83] 2011 51 R 6, 766 30 Multiple Yes Yes Recognition

J-HMDB [66] 2013 21 R 928 30 Multiple Yes Yes Recognition, Spatiotemporal Detection

Table 2.9: Summary of Benchmark Datasets. R indicates that the datasets were extracted from realistic videos. Thus, the
number of actors cannot be determined. (*) Although the intended use of these datasets is to recognize actions, the authors
provide ground truths (e.g. start and end frames, silhouettes) allowing the evaluation of temporal/spatiotemporal detection
possible. (†) The official report of the UCF50 dataset [139] documents a total of 6676 videos in the UCF50 dataset. However,
the downloadable UCF50 dataset contains 6681 videos.

42

Chapter 3

Image Representation:
Features and their Encodings

In order to categorize an action in an efficient and accurate manner, features that
provide meaningful information must be gathered and encoded for classification.
Ideally, the representation model should be robust to variation in appearance of the
actor(s), background, viewpoint, and performance nuance while preserving sufficient
information to accurately classify the action. To overcome this barrier, a plenitude of
representation models have been introduced. In this review, representation models
will be organized according to the general sequence of steps that are taken to extract
features from raw input videos. This procedure involves transforming the raw data in
videos into features then encoding these features before they enter the classification
stage (see Figure 3.1). In this chapter, various methods to obtain useful features
(section 3.1) and encoding methods (section 3.2) that have appeared in the field of
action recognition and detection will be explored. In some algorithms, the resulting
feature representation or encoding model has led to excessive and redundant data,
thus features have been post-processed to overcome this issue and will be examined
in section 3.3.

Figure 3.1: General overview of the contents that this chapter will entail. Blue boxes
indicate the steps that will be covered in this chapter and the dashed line indicates
that feature post-processing is an optional step prior to the classification stage.

3.1 Feature Extraction

A raw input video is made of voxels, where each voxel contains photometric infor-
mation, such as intensity or RGB values. This lattice of raw information must be
transformed into some representational model such that it can be processed in its

43

3.1 Feature Extraction CHAPTER 3. IMAGE REPRESENTATION

subsequent classification stage. To transform this raw data into informative fea-
tures, useful information must first be extracted then represented in some form.
In this section, various approaches to sampling input video data and subsequently
extracting primitive feature descriptors will be examined.

3.1.1 Sampling Methods

Information from a video can be sampled in three ways: through (i) regular sampling,
(ii) dense sampling, or (iii) sparse sampling (see Figure 3.2). In regular sampling,
data is obtained at every n voxels, where n ∈ Z+, and if n = 1 then the entire data
of the video is used. In dense sampling, a video is divided into either rectilinear
patches or as more irregular supervoxels. In sparse sampling, salient regions within
a video are localized by optimizing some saliency function. In the following, various
types of dense and sparse sampling techniques that have appeared in the field of
action recognition and detection will be studied1.

Figure 3.2: General breakdown of the sampling methods. Data can be sampled from
videos through regular, dense, or sparse sampling methods. Although these sample
methods are described as independent entities, regular sampling at every interval is
equivalent to dense sampling the entire video as would setting the threshold to zero
for any response function in sparse sampling.

Dense Sampling Methods

Videos can be partitioned into simple rectilinear patches or supervoxel segments
according to proximity, similarity, and continuation [206]. Numerous supervoxel
algorithms have appeared in computer vision and various methods have been used
as a pre-processing step to solve action recognition problems, such as mean shift
[76], streaming hierarchical supervoxel method [206], and SLIC [38]. Common to
all, supervoxel region extractors is a critical parameter (or kernel bandwidth size)

1Further details on regular sampling are omitted for its simplicity and lack of variability in the
field of action recognition.

44

3.1 Feature Extraction CHAPTER 3. IMAGE REPRESENTATION

that determines the size of the objects to be segmented. A small bandwidth cor-
rectly segments small objects but tends to over-segment large objects into multiple
parts. Conversely, a large bandwidth correctly segments large objects but incor-
rectly groups small objects together. Therefore, even though a rich set of super-
voxel methods have appeared in the field of computer vision, its utilization in action
recognition remains under-explored partly because it is expected that an entire ob-
ject will not be segmented as a single region in a typical realistic video. Thus, use of
supervoxels is perceived as groupings of video-based features for object and region
labelling [206]. However, the borders created by the supervoxels can provide crude
information on the boundaries between objects (see Figure 3.3) without relying on
the unsolved background-subtraction problem [76]. Furthermore, supervoxels can
be used as weighing functions to distinguish motion created by the actor, camera,
and the background [23, 38].

Figure 3.3: Example of an input video (top row), its corresponding supervoxel
segmentation (middle row), and the boundaries of the supervoxel segmentation.
Redrawn from [206].

Sparse Sampling Methods

Representing every voxel of a video can be computationally taxing especially for
benchmark datasets that contain thousands of videos, like UCF101, HMDB51, and
ActivityNet. Correspondingly, there has been extensive research to avoid the com-
putational burden of processing entire videos in large datasets [130, 151, 190, 196]. A
video can be sampled sparsely at regular grid points or by extracting interest points
or regions. In images, interest points often refer to regions with corners, blobs, and
junctions. Likewise, spatiotemporal interest points (STIPs) in videos can be consid-
ered as three-dimensional corners, blobs, and/or junctions, which can be detected
by maximizing some response function. The construction of a three-dimensional re-
sponse function for videos can be done by either generalizing a two-dimensional inter-
est point detector in images to three-dimensions or by combining a two-dimensional

45

3.1 Feature Extraction CHAPTER 3. IMAGE REPRESENTATION

interest point detector with a one-dimensional detector to compensate for the extra
temporal domain in videos. In the following, various sparse sampling methods that
extract STIP by (i) generalizing the two-dimensions in images to three-dimensions in
videos, (ii) a combination of two-dimensional spatial domain with one-dimensional
temporal domain, (iii) tracking two-dimensional interest points, and (iv) others, will
be explored.

Direct Extensions of 2D Detectors Sampling methods that have been suc-
cessful at extracting interest points in images can be directly extended to the third-
dimension by assuming that the temporal domain in videos is analogous to a third
dimension of space. In order to detect multi-scale interest points in videos, a spa-
tiotemporal scale-space representation of a video sequence must initially be defined.
Then a saliency map can be constructed to extract spatiotemporal interest points
[151]. An image sequence, I, at point x = [x y t]> can be modelled in linear
scale-space by taking the convolution of I with a Gaussian kernel g:

L(x|σ2
0, τ

2
0) = g(x|σ2

0, τ
2
0) ∗ I(x), (3.1)

where σ0 and τ0 denote distinct spatial and temporal scales, respectively.

One of the most common 2D corner detector for images is the Harris detector,
which can be generalized to Harris 3D detectors [87, 88] to detect 3D corners in
videos by averaging the spacetime gradients ∇L with a Gaussian weighting function:

H1(x|σ1, τ1) = g(x|σ2
1, τ

2
1) ∗

L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t

 , (3.2)

where Lx, Ly, and Lt denote first-order partial derivatives of L with respect to x,
y, and t, respectively. Spatiotemporal interest points are obtained by detecting the
local positive maxima of the following function:

S1 = det (H1)− k[Tr (H1)]
3, (3.3)

for some constant k. The Harris 3D detector is suited to detect spatial corners that
change motion direction, like start or stop of some local motion in a video [151].

Another common interest point detector that appears often in images is the
Hessian detector. The Hessian detector [203] in images can be directly extended to
videos by defining the Hessian matrix in 3D as:

H2(x|σ2
2, τ

2
2) =

Lxx Lxy Lxt

Lyx Lyy Lyt

Ltx Lty Ltt

 . (3.4)

46

3.1 Feature Extraction CHAPTER 3. IMAGE REPRESENTATION

Regions with a local maxima of the determinant of the 3D Hessian (i.e. S2 =
|detH2|) for some particular position and scale correspond to a centre of a blob in
a video [151].

2D (Spatial) Detector with a 1D (Temporal) Detector Beyond varying the
scale-space support in space and time separately via constants σ and τ , the temporal
dimension can be managed by generating an even more distinct filter in the temporal
domain. The temporal domain can be treated differently from the spatial domain by
applying distinct filters for each domain [29, 122]. The cuboid detector [29] couples
a Gaussian filter in the spatial domain and a Gabor filter in the temporal domain
to create a response function that is applicable in the spatiotemporal domain. For
a given video I(x), the response function is defined as:

R(x) = [I(x) ∗ g(x, y|σ) ∗ heven(t|τ, ω)]2 + [I(x) ∗ g(x, y|σ) ∗ hodd(t, τ, ω)]2, (3.5)

where g(x, y|σ) is the 2D Gassian smoothing kernel applied along the spatial dimen-
sions (x, y), and heven(t|τ, ω) = − cos (2πtω)e−t

2/τ2 and hodd(t|τ, ω) = − sin (2πtω)e−t
2/τ2

are quadrature pair of 1D Gabor filters applied along the temporal domain t. σ and
τ correspond to spatial and temporal scales of the detector, respectively, and ω the
centre frequency2. It can be observed that the cuboid detector is best matched to
an intensity pattern that oscillates sinusoidally along the temporal dimension and
smoothed in the spatial dimension with a low-pass (Gaussian) filter. Conversely, the
smallest response would be generated in regions that lack temporally distinguishing
features. Hence, it is well suited to detect temporally varying patterns even while
providing little response to those that remain static. In comparison to the aforemen-
tioned detectors, 3D Harris and Hessian, the cuboid detector extracts a denser set of
features and is consequently computationally more expensive to follow-on processing
[190].

Tracking-based Detectors Determining good features to track is an alternative
approach to obtaining a useful set of sample points. Since points found in struc-
tureless regions are impossible to track, it would be helpful to remove them from
the sampling set. The decision to retain or remove a point can be made using the
good-features to track criterion [154], which is determined by the eigenvalues of the
auto-correlation matrix, a matrix intimately related to 2D Harris. This sampling
technique is incorporated in the (improved) dense trajectory features [186, 188],
which has shown to be very effective as it is one of the strongest contemporary
features in application to action recognition.

Other Sparse Sampling Methods There are many other sparse sampling meth-
ods that were not mentioned in detail, such as the Harris-Laplace [111], Hessian-
Laplace [112], Difference of Gaussian (DoG) [98] and maximally stable extremal

2The centre frequency for the Gabor function refers to the frequency in which the filter yields
the greatest response. ω can be set to 4/τ to reduce the number of parameters involved in equation
(3.5) [29, 122].

47

3.1 Feature Extraction CHAPTER 3. IMAGE REPRESENTATION

region (MSER) [109] detectors. The Harris-Laplace, which uses the Harris and
Laplacian functions to find and select points, respectively, is capable of detecting
corners and other junctions, pairs and triplets of edge segments to represent contours
invariant of scale and rotation changes [114]. The Hessian-Laplace localizes points
in space and scale by taking the local maxima of the determinant of a Hessian and
the Laplacian-of-Gaussian, respectively [113]. Since the shape of the Hessian kernel
fits better to blob-like structures than corners, the Hessian-Laplace detector is used
to extract various types of blobs [114]. The DoG detector, which is often used in
accordance with a 3D histogram of gradient location and orientation and together
referred to as SIFT, uses the difference of images of different scales convolved with a
Gaussian function to identify the locations of edges and blob-like structures. MSER
extracts blobs by expanding regions according to their intensity levels by gradually
increasing some threshold value. The value that enforces the smallest rate of change
is selected as the threshold to extract MSER and has shown to provide useful de-
tection results [94, 114, 177].

The extracted features can be pruned using spatial, temporal, or motion statis-
tical measures [96]. Excessive amount of features can be judged by comparing the
number of features extracted in a single frame to the average amount of features
present per frame. Spatial outliers can be spotted using neighbourhood information.
Lastly, PageRank [115, 129] can be used to identify consistency of the extracted fea-
ture to others to classify them as inliers.

Discussion on Sampling Methods

Regular, dense, and sparse sampling methods have been described as independent
entities in this section, but we must bear in mind that these methods are not dis-
joint. That is, regularly sampling at every interval would be equivalent to dense
sampling the entire video, which is equivalent to setting the threshold to 0 for any
response function in sparse sampling.

Videos that largely consist of static backgrounds that pose no useful information
to recognize actions (e.g. videos in the KTH dataset) benefit from sparse sampling as
features obtained through dense sampling provide no useful data [190]. Furthermore,
extracting features sparsely across videos provide data compactness leading to com-
putational efficiency. When coupled with appropriate descriptors and classifiers (to
be described in more detail in the following section and chapter, respectively), these
detectors extract sufficient data to acceptably differentiate between human actions.
However, it was observed that sparse sampling methods fall behind the accuracy in
recognition that dense (or regular) sampling methods are able to provide, especially
in videos with contextual information (e.g. UCF Sports, Hollywood2) [190]. This
result may be due to the fact that (i) the data extracted using these detectors tend
to be too sparse and (ii) the contextual information, such as equipment or scene,
can provide additional information to improve classification results. Furthermore,
many saliency functions that are used to extract features assume that videos contain

48

3.1 Feature Extraction CHAPTER 3. IMAGE REPRESENTATION

several instances of motion or appearance that are significantly different in either
direction of motion or the boundary between the background and the actor. This
assumption leads to failure in capturing smooth motions (as in Figure 3.4a) and
generates spurious detects along object boundaries (see Figure 3.4b) [75].

The sparse motion detectors mentioned in this paper (e.g. cuboid detector, KLT
tracker, DT) can be used in motion compensated or non-compensated videos. These
detectors are expected to fire at the presence of motion whether it be camera motion
or motion created by different body parts of an actor. Often in action recognition, it
is understood that motion created by the object’s body provides useful information.
Thus, the output results of these detectors must be used with caution as they may
respond to some dominant motion due to camera movement or an actor occupying a
large portion of the field of view, which may or may not be the desired information
that one wishes to obtain for their recognition algorithm.

The choice of data extraction can affect the computational efficiency but can
also influence the accuracy of the recognition step as sampling is the first step in the
recognition procedure. Thus, the data extraction technique must be chosen with
caution as it can heavily influence or deter the outcome of the results in following
processing steps.

3.1.2 Feature Descriptors

Once a sampling method has been selected, information that would characterize
the structure of the region must be represented in some useful way as a descriptor
before it enters the classification stage. In the following, the feature descriptors have
been split into general primitive and specialized primitive features as illustrated in
Figure 3.5. General primitive features refer to features that can be obtained directly
from raw input videos, which then can be used directly in the classification module.
Specialized primitive features refer to features that are extracted from raw input
videos and require additional processing into auxiliary features before they enter
the classification stage. In this section, some common primitive feature descriptors
as well as its associated auxiliary feature descriptors that have appeared in the action
recognition and detection literature will be studied.

General Primitive Features

General primitive features refer to features that can be directly extracted from raw
videos after some sampling method has been chosen (regular, dense, or sparse) and
are transformed in a way such that it can be processed directly by some chosen
classification method. General primitive features can be divided into four broad
categories: filter-, flow-, convolutional neural network (CNN)-based, and others.
Here, each of these categories will be examined.

49

3.1 Feature Extraction CHAPTER 3. IMAGE REPRESENTATION

(a) Blue arrow indicates the direction of motion. Two motions are illustrated in this
example: circular motion (left) and the figure ‘8’ motion (right). The 3D plots of
motion through time are illustrated (bottom) with blue ellipsoids showing detected
interest points. All detected interest points were non-informative, and were only
detected due to the boundaries that formed as the arm moved with the edge of the
frame.

(b) Spacetime interest points detected on regions affected by varying lighting
conditions. STIP detectors are sensitive to lighting conditions, therefore are
detected in regions with bright light or shadows.

Figure 3.4: Examples of commonly occurring motions that fail to produce useful
interest points. Redrawn from [75].

50

3.1 Feature Extraction CHAPTER 3. IMAGE REPRESENTATION

Figure 3.5: General breakdown of feature descriptors. Features can be obtained from
raw videos by describing them using general primitive features or specialized prim-
itive features. While general primitive features can be used to train and test data
immediately, specialized primitive features must be further processed into auxiliary
features before the features enter the classification stage.

Filter-based Descriptors Filter-based approaches can be categorized into two
types: (i) gradient-based and (ii) oriented bandpass filter-based descriptors. Gradient-
based methods rely on the assumption that the local appearance and shapes of an
object can be portrayed by their local intensity gradient or edge directions. Oriented
bandpass filter-based approaches use oriented filters to decompose videos into basic
components using local orientation and scale. Notably, gradient-based approaches
are an example of (high-pass) oriented filters, which have received a particularly
large research focus. Hence, they are dealt separately from the more general ori-
ented bandpass filters in the following.

A rich set of gradient-based descriptors have appeared in the field of action recog-
nition. Some descriptors that have made frequent appearance in the field include:
histogram of oriented gradients (HOG) [25, 191], HOG3D [78], cuboid descriptor
[29], scale-invariant feature transform (SIFT) [98], gradient location-orientation his-
togram (GLOH) [113], local trinary patterns (LTP) [211], and spatiotemporal (ST)
patches [152]. HOGs store spatially oriented gradient to capture appearance infor-
mation of the action. HOG3D extends HOG descriptors by storing spatiotemporal
oriented gradients to store shape and motion information together. The cuboid de-
scriptor [29] concatenates three gradient channels (Gx, Gy, Gt) into a single vector
to form a single feature vector for each neighbourhood. SIFT [98], which is coupled
with a scale-invariant region detector, DoG, uses 3D histograms to represent the
gradient locations and orientations. The 2D SIFT descriptor uses polar coordinates

51

3.1 Feature Extraction CHAPTER 3. IMAGE REPRESENTATION

to obtain the gradient magnitudes and orientations, and the 3D SIFT descriptor
[149] uses an additional angle to represent the direction of the gradient to incorpo-
rate temporal information. The location and orientation bins in 2D/3D SIFT are
weighed by the gradient magnitudes. Instead of quantizing the location information
on a Cartesian grid as in 2D/3D SIFT, GLOH quantizes them on a log-polar grid
to increase robustness and distinctiveness [114]. LTPs compare intensities of the
neighbouring pixels between preceding and succeeding frames to the current frame
to determine the direction of motion [211, 79]. ST patches uses spatiotemporal gra-
dients to estimate the motion of the sampled regions to obtain a rank of the ST
patch. The constraint based on the rank provides information on motion without
explicitly computing the optical flow and spatial information (e.g. uniform intensity,
edge-, and corner-like features) [152].

Although many of these oriented gradient-based descriptors provide computa-
tional efficiency to gather crucial information, such as appearance and/or motion,
they are very sensitive to illumination changes. Often, these descriptors do not
provide sufficient information and must be used in parallel with other descriptors
that possess distinguishing characteristics (e.g. HOG is often found with HOF) to
overcome its limitation.

Spatiotemporal oriented bandpass filters can decompose an image sequence into
basic components using the dimension of local orientation and scale (i.e. angular
and radial frequencies). Consequently, various types of oriented filters have been ap-
plied to a range of dynamic image understanding tasks, such as action recognition
and detection [123]. These representation models tend to be capable of character-
izing image dynamics without explicitly requiring flow recovery nor segmentation
of videos [24]. Two particular approaches of spatiotemporal oriented filtering have
been commonly applied to actions: 3D Gabor filters [24, 123] and Gaussian deriva-
tive filters [67]. Both 3D Gabor and Gaussian derivative filters are typically applied
in quadrature pairs and combined to produce some local energy measurement. Often
subsequent processing is involved, such as normalization and/or combination of filter
outputs. The normalization process provides robustness to photometric variations
[24], while combining filter outputs (e.g. appearance marginalization [28]) attempt
to gather information on image dynamics that is invariant to spatial appearance.
The filter outputs can also be combined to yield explicit motion estimates or other
measurements of image motion [49].

Representations based on spatiotemporal oriented bandpass filters tend to be
robust to illumination changes, in-class variations, and occlusion. Many researchers
choose to use Gaussian derivative filters for its separability and recursive components
to keep the representation computationally efficient [24, 28]. However, some filter
responses (e.g. bandpass filters) pose sensitivity to irrelevant appearance attributes.
Furthermore, these filters tend to be sensitive to scale changes, which is problematic
since the actor/action size is inconsistent between and within each video.

52

3.1 Feature Extraction CHAPTER 3. IMAGE REPRESENTATION

Optical Flow-based Descriptors Optical flow-based algorithms have appeared
frequently in various action recognition algorithms. Optical flow provides data that
can be used in two ways: (i) to extract information on motion and (ii) for tracking
purposes. Here, some common optical flow-based representation models that have
appeared in the action recognition literature for each method will be explored.

Optical flow can be used to recognize actions by describing the motion of the
actor. A standard optical flow algorithm can be applied to stabilized figure-centric
volumes to capture motion created by different parts of the body (see Figure 3.7b)
[34, 94]. By separating the optical flow into horizontal and vertical components (as
in Figure 3.7d) then blurring them (via Gaussian as in Figure 3.7e), an artificial set
of motion channels are created [34, 36]. Often, the Kanade-Lucas-Tomasi (KLT)
tracker is used to estimate local motion in a hierarchical manner to obtain the initial
flow for the next level [177].

Histograms of Optical Flow (HOF) captures local motion of the pattern by quan-
tizing the orientation of the optical flow vectors. While such characterization of
motion is sufficient in distinguishing highly distinct actions (e.g. “walk” vs. “wave”
in the KTH dataset), it fails to distinguish fine differences in actions (e.g. “box”
vs. “clap” in the KTH dataset). Thus, simple description of motion combined with
information on appearance (e.g. HOG) can yield more accurate recognition results
as has been observed in more complicated datasets, such as the Hollywood1 dataset
[88].

The Motion Boundary Histogram (MBH) is a descriptor that uses derivatives
of optical flow for each horizontal and vertical directions, Ix and Iy, respectively
[26, 186]. By computing the spatial derivatives for each flow field, the local gra-
dient orientations and magnitudes can be found to construct a local orientation
histogram. Since MBH computes the gradient of optical flow, constant motion is
suppressed and only the information regarding changes in the flow field are kept.
Thus, MBH provides a simple way to suppress constant motion (e.g. camera motion)
while preserving local relative motion of pixels (e.g. motion boundaries/foreground
motion) (see Figure 3.8 right). This is an appealing feature, especially for recogniz-
ing actions in realistic videos, since they tend to contain severe camera motion [186].
Furthermore, the majority of the texture information from the static background is
eliminated as the derivatives of the trajectories are considered.

With optical flow, physical properties of the flow pattern can be extracted via
kinematic features, such as divergence, vorticity (or curl), symmetric and antisym-
metric optical flow field, second and third principal invariants of flow gradient and
rate of strain tensor [3, 63]. Kinematic features are perceived as independent forces
that act on the object and capture information regarding motion only. For exam-
ple, divergence captures information on the amount of axial motion, expansion, and
scaling effects. Vorticity (or curl), on the other hand, highlights the circular mo-
tion created by the human body or part of the human body. Thus, motions of the

53

3.1 Feature Extraction CHAPTER 3. IMAGE REPRESENTATION

hand toward the camera would be well captured by divergence; in contrast, rotary
motions of the hand parallel to the image plane would be well characterized by a
curl. The kinematic features collectively provide a unique spatiotemporal pattern
description of the human action.

Dense trajectory (DT) features [186] were introduced as another form of descrip-
tors that track the path of sampled motion (see Figure 3.6b), which have made
frequent appearance in the field of action recognition and detection [186, 228]. DT
features first require dense sampling of feature points at each frame, which are
pruned using good-features to track. Then each of the sampled points are tracked
using optical flow to obtain its trajectory. The trajectory descriptor is obtained
by concatenating the normalized displacement vectors. These features are often
combined with other features (e.g. HOG, HOF, MBH) aggregated along the trajec-
tories. Various dense trajectory models that would enhance the original DT model
[186] have been proposed [69, 188]. One approach was to cluster the dense tra-
jectories to detect the dominant direction of motion and consider relative motion
between the trajectories to gather object-background and object-object information
[69]. Another approach was to explicitly estimate camera motion [188] by matching
feature points between frames using SURF descriptors [9] and dense optical flow
[154]. This particular camera motion compensated trajectory feature is referred to
as the improved dense trajectory (iDT) feature and has appeared frequently in action
recognition and detection literature [11].

(a) KLT Trajectories

(b) Dense Trajectories

Figure 3.6: Examples of KLT and dense trajectories of the “kiss” action from the
Hollywood2 dataset. Redrawn from [188].

Optical flow has been successful in various applications (e.g. tracking). In fact,
some approaches have benefited from using optical flow-based algorithms to track
humans, body parts, and interest points yielding good action recognition results
(see under Specialized Primitive Features - Tracking-based Models). However, the
ability to estimate motion accurately and consistently has numerous challenges as-
sociated, such as motion discontinuities (e.g. occlusion), aperture problems, and
large illumination variations (e.g. appearance changes).

54

3.1 Feature Extraction CHAPTER 3. IMAGE REPRESENTATION

(a) Original Frame. (b) Optical Flow ~F =
[
Fx Fy

]>
.

(c) The optical
flow vector ~F is
split into hori-
zontal (Fx (top))
and vertical
(Fy (bottom))
components.

(d) Horizontal and vertical op-
tical flows are half-wave recti-
fied to produce F+

x (top left),
F−x (top right), F+

y (bottom
left), and F−y (bottom right).

(e) Half-wave rectified motions
are blurred into Fb+x (top left),
Fb−x (top right), Fb+y (bottom
left), and Fb−y (bottom right).

Figure 3.7: The actor can be tracked to obtain a stabilized figure-centric volume. A
standard optical flow algorithm applied on a stabilized volume captures the motion
created by the local regions in the volume. Redrawn from [34].

55

3.1 Feature Extraction CHAPTER 3. IMAGE REPRESENTATION

Figure 3.8: Illustration of HOF, HOG, and MBH interest point descriptors. The gra-
dient information (HOG) (bottom-centre) and flow orientation (HOF) (top-centre)
is calculated for each frame in a video (left). Using the x and y components of
optical flow, the spatial derivatives are calculated for each direction to obtain the
motion boundaries on Ix and Iy (right). The gradient directions are indicated by
the hue and magnitude by the saturation. Redrawn from [186].

Convolutional Neural Network-based Descriptors In recent years, there has
been a surge of algorithms relying on Convolutional Neural Networks (CNNs or Con-
vNets) in a wide variety of artificial intelligence-based problems, including action
recognition. As its name suggests, CNNs are based on neural networks, which is a
system that consists of a sequence of layers with a set of artificial “neurons” in each
layer. The first layer of the network, the input layer, usually consists of raw pixels
of an image/videos [5, 11, 30, 39, 43, 68, 156, 195], but pre-processed data, such as
optical flow displacement fields [30, 39, 68, 118, 156, 195], can also be used. The last
layer of the network, the output layer, is typically interpreted as a softmax/logistic
regression. Alternatively, the outcome of the output layer can be fed into a classi-
fier (e.g. an SVM) to produce a class score or class rankings. The architecture of
a CNN can be characterized by the local connections in the intermediate, hidden,
layers. The hidden layers often alternate between convolution, rectification, and
pooling operations, with an optional normalization layer. On occasion, pooling is
neglected altogether [166]. In conjunction with deep-learning, the network weights
are learned via back-propagation with shared weights within a layer. Prototypi-
cally, the learned weights only pertain to the numerical values of the taps in the
convolution’s point-spread functions [44, 93]. While the theoretical understanding
of these architectures are limited, it appears to successfully extract descriptors that
are well-suited to the domains on which they are trained (e.g. object parts and
assemblies thereof) [223]. Currently, CNNs dominate the empirical evaluations in
many image-based recognition tasks, including action recognition [11, 195].

Motivated by state-of-the-art performance on various image classification tasks,
CNNs have been utilized in various ways on video classification tasks as well. A
method to incorporate the temporal domain or motion information onto the well-

56

3.1 Feature Extraction CHAPTER 3. IMAGE REPRESENTATION

established 2D CNN architecture has been the main branching point of many algo-
rithms in video classification. The most intuitive approach would be to replace 2D
convolution and/or pooling operations with 3D ones to account for the additional
(temporal) domain in videos [5, 68, 73, 155, 175]. Alternatively, the temporal infor-
mation in videos can be summarized into a single RGB image such that standard 2D
CNNs can be applied to recognize actions [11]. Recurrent neural networks (RNN),
which are capable of learning temporal dynamics by explicitly considering the se-
quences of CNN activations in a recurring manner, is another approach taken to
account temporal dimension in videos [5, 30, 104, 118, 157]. To account for RNN’s
inability to learn long-range temporal relationships, numerous algorithms suggest
embedding long short-term memory (LSTM) units into the architecture to allow the
network to learn to recognize and synthesize temporal dynamics [5, 30, 104, 118].
Recent methods resort to CNNs to obtain feature vectors of images [59, 104, 105, 212]
or iFV-encoded iDT features with HOG, HOF, and MBH feature descriptors [220] as
inputs to LSTM-RNN. Processing images in a per frame basis keeps track of which
features are occurring when, allowing temporal detection of actions to be possible
[212].

Another route that has been explored is the two-stream model [156], inspired
by biology [47], which decouples the appearance and motion components of a video
[41, 157, 231]. The appearance stream takes framewise spatial input (e.g. RGB
values) while the motion stream takes motion input (e.g. optical flow values [30, 41,
68, 118, 156, 195, 231], motion vectors [224]). The two streams can be fused at the
final stage of their respective architectures [30, 41, 68, 118, 156, 195], or sooner via
convolutional fusion to put the channel responses in two streams that occur at the
same pixel location into correspondence [41]. Alternatively, the two streams can be
fused via introduction of residual connections between the paths [40]. In the stan-
dard two-stream approach, computing the optical flow is expensive and the most
timely step. Thus, rather than employ the most sophisticated dense optical flow
techniques, some have relied on cruder block-based matching approaches, as em-
ployed for compression, which the authors refer to as “motion vectors” [224]. These
approaches, however, exhibit coarser structure than optical flow and may contain
noise and inaccurate movements.

One CNN-based algorithm takes a completely different approach by redefining
“action” as a change that it brings to the environment (see Figure 3.9). Thus,
features before the action (at the pre-conditioned state) and after the action (at the
effect state) are aggregated using a Siamese network to represent an action [195].

The specificity of the features increases at higher layers of the network [166, 223].
Thus, reducing the number of layers and neurons in each layer could depreciate the
overall performance of the system [73, 223]. Although the state-of-the-art perfor-
mance in complex datasets are achieved using CNNs with many layers, it is done at
a high computational cost [73]. To compensate for computational complexity, one
approach applies PCA-whitening between layers on a stacked ISA network [92]. Al-

57

3.1 Feature Extraction CHAPTER 3. IMAGE REPRESENTATION

Figure 3.9: One algorithm defines actions as transformations brought to the environ-
ment (i.e. pre-conditioned state × action = effect). Two transformations, kick (top
row) and jump (bottom row), are illustrated with their respective pre-conditioned
(left columns) and effect (right columns) states. Redrawn from [195].

ternatively, a network can be separated into two streams that processes each frame
of a video with two different spatial resolutions: (i) downsampled frames at half the
original spatial resolution, and (ii) a smaller spatial window at the original resolu-
tion (e.g. centre region if videos are obtained from video sharing services to take
advantage of the camera bias shot by amateur recorders) [73]. Another obstacle
that hinders the use of CNN-based methods is the amount of training data that
is required to construct a reliable system [73, 156]. Two of the largest benchmark
datasets available, UCF101 and HMDB51, are considered too small to train a CNN-
based video classification program from scratch [156, 195]. Thus, Sports-1M [73],
a dataset containing more than a million videos, is often used to train the system.
Since datasets as large as Sports-1M are typically constructed with some degree of
automaticity, it leads to corruption of data, accumulating even more challenges at
the training and testing stages. Alternatively, the networks can be pre-trained on
large static image recognition datasets (e.g. ImageNet [27]). However, such pre-
training may cause the final network to bias towards appearance information over
motion, an undesirable trait for action recognition and detection in videos.

Other General Primitive Feature Descriptors Not all descriptors that have
appeared in the action recognition literature can be categorized as either filter-, flow-,
or CNN-based representation models. Here, a select few other general primitive fea-
ture descriptors that do not fall under these categories that possess noteworthy
characteristics are mentioned. They are: eSURF [9], MACH filter [140], and TCCA
features [77].

The extended Speeded Up Robust Features (eSURF) is a descriptor based on
Haar-wavelet responses (dx, dy, dt) along the three axes [203] based on SURF [9].
The feature vector is constructed by summing the weighed responses of the Haar-
wavelets as sampled uniformly across each interest point (

∑
dx,
∑
dy,
∑
dt). The

Haar-wavelet responses are weighed with a Gaussian to account for geometric de-
formations and localization errors [9].

58

3.1 Feature Extraction CHAPTER 3. IMAGE REPRESENTATION

The maximum average correlation height (MACH) filter [140] is one of few algo-
rithms that considers condensing a collection of data into a single template. Intra-
class variations of an action is generalized into a single template by optimizing four
performance metrics: average correlation height (ACH), average correlation energy
(ACE), average similarity measure (ASM), and output noise variance (ONV). It uses
spatiotemporal regularity flow (SPREF) to obtain the direction that best represents
the overall regularity of the volume (i.e. the direction in which the pixel intensities
change the least) instead of other motion estimators to avoid challenges that occur
due to motion discontinuities, aperture problems, and large illumination variations.
The SPREF flow field volume of each example is converted using a Clifford Fourier
Transform (CFT) for its efficiency, which is used to synthesize the MACH filter.
The composite template video is obtained by combining the mean of the CFTs, the
noise covariance matrix, the average power spectral density, and the average simi-
larity matrix to minimize ACE, ASM, and ONV while maximizing the ACH.

Tensor canonical correlation analysis (TCCA) features [77] consider videos as
third-order tensors with three modes (or axes). Third-order tensors can share any
single or multiple modes. Thus, if a canonical transformation, a transformation
that maximizes the correlation of two multi-dimensional arrays, is applied to the
modes that are not shared, then two types of TCCA can be produced: the joint-
shared mode and the single shared-mode. The joint-shared mode allows any two
modes (or axes) (i.e. a plane or section in the video) to be shared and applies the
canonical transformation to the remaining single mode. It is found that a single
pair of canonical directions would maximize the inner product of the output tensors
(or canonical objects) for the joint-shared modes. The single-shared mode, on the
other hand, allows any single mode (i.e. a scan line of a video) to be shared and
applies the transformation to the remaining two modes. Here, two pairs of free
transformations maximize the inner product of the canonical objects for the single-
shared modes. A single pairing of joint-shared mode TCCA preserves discriminative
information, whereas the double pairing of single-shared mode TCCA preserves less
original data resulting in more flexibility in its information. Thus, the joint-shared
mode TCCA is used to filter inter-class differences (e.g. difference between actions)
while the single-shared mode TCCA features are permissive to intra-class variations
(e.g. difference in appearance).

Specialized Primitive Features and Auxiliary Features

Some algorithms require extraction of primitive features and further refinement into
auxiliary features before they can be useful to a classifier, especially the methods that
were proposed in the earlier years of action recognition. Some examples of special-
ized primitive features include silhouettes/contours and object tracks. Silhouette-
/contour- and tracking-based features and the corresponding auxiliary features are
described in the following.

59

3.1 Feature Extraction CHAPTER 3. IMAGE REPRESENTATION

Silhouette-/Contour-based Models Numerous cognitive studies have shown
that humans are capable of extracting various useful information from silhouettes,
such as recognizing objects, labelling parts, and comparing similarities to other
shapes [8, 10]. Thus, a video of silhouettes may provide sufficient information for
recognition even while being robust to lighting conditions and invariant to the ap-
pearance of the person. Once the silhouettes of the actors are extracted, information
can be described in various forms. Silhouettes can either be directly converted into
1D signals, converted into binary or scalar images then described using moments,
or they can be stacked to form space-time volumes. A sample of each type of auxil-
iary silhouette features, which include R Transforms, motion energy images, motion
history images, motion history volumes, and spacetime volumes, will be described
below as a sample of such approaches.

R transforms are shape descriptors that convert silhouette images to 1D signals.
By taking the squared sum of the Radon transform, commonly used to detect lines
in images, over varying radii, a translation invariant Radon transform is defined al-
lowing video alignment to match the position of the actor unnecessary. Furthermore,
to resolve the scale sensitivity problem of Radon transforms, R is normalized. This
improved extension of the Radon transform, the R transform, attracted attention
to earlier action recognition algorithms that were silhouette-based (see [164, 198]).

Binary images of silhouettes called motion energy images (MEI) can be con-
structed by accumulating the difference between silhouettes in subsequent frames
and a scale-valued image, referred to as motion history images (MHI) can be con-
structed to store the recency of motion that occurred at every pixel (see Figure
3.10a). MEIs and MHIs together provide information on the location and the tem-
poral history of the motion, respectively. These images have been further described
using Hu moments [55] to draw further comparisons with other actions [100]. Many
silhouette-based algorithms have shown sensitivity to object’s displacement and ori-
entation to the camera. This problem can be resolved by replacing the silhouette
motion indicating function with a silhouette occupancy function to create motion
history volumes (MHV) instead of MHIs (see Figure 3.10b) [201]. Although MHVs
have this appealing feature of viewpoint invariance with the use of an occupancy
function, it is a great challenge to obtain an accurate function that would precisely
model x-, y-, z-coordinates of where the object of interest is especially in videos
gathered in uncontrolled settings, such as the web.

A sequence of silhouettes or its contours/boundaries can be concatenated along
the temporal axis to create an image feature that captures the relationship between
space and time of a person’s action called spacetime volumes (STV) (see Figure
3.10c). Information on the location of the general body parts (e.g. head, torso, and
extremities) can be obtained by calculating the average time it takes for every point
inside the STV to reach the contour via a random-walk process [14] or differential
geometry [213]. The Poisson equation can be used to identify the motion saliency
of moving parts and their orientations [14]. While MHVs and STVs appear similar,

60

3.1 Feature Extraction CHAPTER 3. IMAGE REPRESENTATION

MHVs illustrate the recency function through its 3D reconstruction, while temporal
information cannot be observed in STVs.

Although silhouettes/contours provide useful information, obtaining accurate
segmentation of an actor is not guaranteed, especially in situations where the back-
ground is not static as background subtraction remains an unsolved problem in
computer vision. Furthermore, the view angle can alter a person’s silhouette dras-
tically and the features inside the boundary cannot be delineated since a person is
represented as a single region.

Tracking-based Models As briefly mentioned in the optical flow section, track-
ing can be perceived as an extreme example of optical flow. Tracking algorithms can
be utilized in action recognition by (i) tracing the trajectory of the entire actor in a
video to segment the actor from the background (see Figure 3.11a) [17, 34, 59, 157]
or (ii) by tracking body parts (see Figure 3.11b) [35, 50, 61, 135, 136, 208] or local
interest regions [35, 60].

Tracking-based methods are potentially robust to variations in appearance of
each actor or local region and have been shown to yield impressive results on low-
resolution videos [34]. Despite significant progress, however, tracking remains an
unsolved problem in computer vision as initializing tracking can be difficult as can
maintaining tracks over an extended period of time, especially in scenes with clut-
tered or dynamic backgrounds. Moreover, since feature trackers often assume con-
stant appearance of image patches over time, this assumption can pose problems
when the appearance of the object changes, especially when two objects merge (oc-
clude) or split (deocclude) [87]. Furthermore, the output of a tracker tends to be
noisy, susceptible to drifting and illumination changes, causing problems in its sub-
sequent steps when representing the action.

Final Remarks on Feature Descriptors

In this section, a select number of popularly used feature descriptors for human
actions were examined. Once the type of sampling method has been determined,
primitive features can be obtained from raw videos. These primitive features can
either be encoded directly or must be converted into auxiliary features before it is
encoded to enter the classification stage. Historically, the field of action recogni-
tion approached the task of action recognition using specialized primitive features
as it contained useful information. However, features that rely on these special-
ized primitive features were deemed unfavourable as background-subtraction and
tracking remain unsolved problems in computer vision. A mixture of filter- and
flow-based algorithms merged. Now, the state-of-the-art performance is achieved by
CNN-based algorithms.

61

3.1 Feature Extraction CHAPTER 3. IMAGE REPRESENTATION

(a) Examples of MEI (left) and MHI (right) of the sitting motion. Redrawn
from [16].

(b) Examples of Motion History Volumes. Motion history volumes of actions
(left-to-right): sit-down, walk, kick, and punch are illustrated using the colour
spectrum, where blue indicates oldest motion and red indicates the most recent
motion. Redrawn from [201].

(c) Examples of a spacetime volume (STV) for actors performing a jumping
jack, walk, and run actions. Redrawn from [14].

(d) The solution to the Poisson equation reveal the shape of an actor. The
values are encoded using the colour spectrum, where low values are encoded
by blue and high values are encoded by red. Regions far from the core (the
extremities and the head) have low values, therefore are encoded in blue.

Figure 3.10: Examples of various silhouette-based models in action recognition.

62

3.2 Encoding Methods CHAPTER 3. IMAGE REPRESENTATION

(a) A sequence of figure-centric frames that
constitute a figure-centric volume of the
actor. Redrawn from [34].

(b) Cardboard Person Model repre-
senting the major components of the
human body: arm (blue), torso (black),
thigh (yellow), calf (red), and foot
(green). Redrawn from [72].

Figure 3.11: Utilizing tracking algorithms to extract the entire actor as a whole
(left) and to track the movement of each body part (right).

3.2 Encoding Methods

Primitive features extracted from videos are often selected in a generic way, which
are not specific enough to directly serve the given task. Consequently, it can be ben-
eficial to encode primitive features with a representation that is specifically designed
to serve the assigned task through an encoding procedure. There are a variety of
different encoding procedures to convert primitive features, f(x) ∈ Rd, to a more
effective encoded representations, c(x) ∈ Rk, where f(x) is a d-dimensional local de-
scriptor extracted from a video at x = [x y t]>, and c(x) is a k-dimensional encoding
vector of f(x)3[22]. In general, the descriptor space must initially be converted into
a codespace via codebook generation. Second, the features must be encoded to cor-
respond to the newly defined space through feature assignment. In some cases, the
amount of encoded data needs to be reduced (pooled) and/or normalized such that
the data type is consistent with other data. In this section, three key steps involved
in encoding feature descriptors, codebook generation, feature assignment, and pool-
ing and/or normalization, as illustrated in Figure 3.12, will be examined.

3.2.1 Codebook Generation

Feature space encoding begins with the generation of a codebook (also referred to as
a dictionary) based on a set of training data. A codebook can be generated in two
ways: (i) by partitioning the features into regions (or clusters) using a discriminative
model or (ii) by representing the space using a set of probability distributions using
a generative model [196]. In either case, the codebooks are constructed with respect

3From here on, f and c will be used in replacement of f(x) and c(x), respectively, for brevity.

63

3.2 Encoding Methods CHAPTER 3. IMAGE REPRESENTATION

Figure 3.12: General framework of encoding feature descriptors. The stages that
are involved in feature encoding are marked in blue and its prior steps are marked
in red.

to a set of training data. In the following, one or more common approaches to each
codebook generation model will be examined.

Discriminative Clustering

A feature space can be divided into distinct regions (or clusters) to form codewords.
Each cluster is comprised of objects that share similar characteristics to one another
but different from objects in other clusters. Among many discriminative clustering
algorithms that are available, k-means clustering is one of the most widely used
techniques in action recognition [42, 61, 88, 94, 135, 149, 191]. k-means clustering
divides a given set of features into k clusters for k ∈ Z+, such that the total distance
between each categorized feature and the centre of its cluster (centroid), which is
referred to as a codeword, is minimized. k-means clustering partitions the space into
non-overlapping regions. As a result, each feature in the feature space is assigned
to one specific cluster. k-means clustering is implemented frequently in practice for
its simplicity and performance.

Another discriminative clustering method that appears in the action recognition
literature is agglomerative clustering [94, 114]. In agglomerative clustering, data
points are clustered to their nearest cluster in a hierarchical manner to form a larger
cluster. The results are usually presented as a dendrogram to record the sequences of
merges [31]. A dendrogram exempts the need to select a specific number of clusters
at the outset [31]. In fact, the optimal number of clusters can be determined using
a scree plot of the dendrogram, where the optimal number of clusters is indicated
by the high curvature in a scree plot. Despite this benefit, not too many recognition
algorithms rely on agglomerative clustering due to its computational burden and its
requirement on storage space [31].

64

3.2 Encoding Methods CHAPTER 3. IMAGE REPRESENTATION

Generative Clustering

A feature space can be represented using probability distributions such as the Gaus-
sian Mixture Model (GMM). Given a set of feature descriptors (from a training
set), a weighted sum of Gaussian functions can be used to model the (training set)
feature space. Typically, the parameters (i.e. the weight, mean vector and covari-
ance matrix of individual Gaussian distribution) that would optimally represent the
feature space are trained through maximum-likelihood (ML) estimation using the
expectation-maximization (EM) algorithm. The learned parameters of the GMM
(e.g. mean vectors and covariance matrices) provide information on the mean infor-
mation of the codewords as well as the shape of their distributions [196]. While first-
and second-order statistical information provides information that would assist in
improving the accuracy of the classification procedure, it is computationally expen-
sive to obtain and store first- and second-order statistical information compared to
discriminative models and not as compact.

Discussion on Codebook Generation

The size of the codebook (i.e. number of clusters or GMMs) is a crucial parameter
in codebook generation as it affects the computational cost and classification accu-
racy. Up to a certain point, recognition performance has been empirically shown to
improve with the growth of the codebook size (i.e. number of clusters or GMMs).
Exceptions to this general point can be observed as the performance plateaus when
the size of the codebook exceeds some threshold [130]. Moreover, an excessively
large codebook size can harm the accuracy level due to over-fitting of the data or
over-partition of the feature space. The thresholds to yield an optimal codebook is
dependent on the dimension and sampling strategy of the feature descriptor [130].

Features with higher dimensions require more codewords to divide the feature
space. Thus, a larger codebook size would be necessary for optimal performance.
Sparsely sampled feature points tend to be more scattered in the feature space than
densely sampled feature points. Thus, to avoid over-partitioning of the codebook
(i.e. to ensure that every cluster is affiliated with a feature), the codebook size
should be smaller in data obtained via sparse sampling as opposed to data obtained
through dense sampling. Moreover, the distribution of densely sampled descriptors
in the feature space would not provide useful high-order statistics (e.g. variance),
which would affect the type of information that should be obtained in the subsequent
assignment step. Thus, although generative models provide more information, dis-
criminative clustering would be the preferred choice with densely sampled features
as they provide a more compact clustering leading to computational efficiency.

While the codebook size is a key parameter, the optimal codebook size is depen-
dent on many factors. Unfortunately, there is no theoretical solution that would find
the optimal codebook size. Thus, readers should bear in mind that many algorithms
that use k-means clustering or GMMs often report best results based on k that was
obtained through trial-and-error.

65

3.2 Encoding Methods CHAPTER 3. IMAGE REPRESENTATION

3.2.2 Assignment Methods

With a codebook generated using a set of features from the training set, a new set of
features can be quantized according to the clusters (or codewords) in the pre-defined
codebook. Features can either be assigned to a single word through hard assignment
or into multiple words through soft assignment. Here, some examples of these two
types of quantization assignment methods are examined.

Hard Assignment

Hard assignment methods assign feature descriptors from videos to a single codeword
in the codebook. The most common hard assignment quantization method that
appears in action recognition algorithms is vector quantization (VQ), which assigns
a feature descriptor to the nearest codeword in the codebook. Instead of assigning
a binary value to the closest codeword as in VQ, a weight can be assigned to the
nearest codeword to quantitatively indicate the similarity between the feature and
a small subset of close codewords as in salient coding (SC) [58]. For its simplicity
and efficiency, VQ is widely used in many action recognition algorithms [42, 61, 82,
107, 135, 148, 209]. Since hard assignments represent each feature by the nearest
codeword, features that are nearly equidistant to multiple codewords are prone to
change even when small adjustments are made at the codebook generation stage.
This ambiguity causes hard assignment-based methods to be unstable, which can
aggravate recognition accuracy rates [196].

Soft Assignment

To overcome the ambiguity that hard assignment quantization techniques pose, fea-
tures can be assigned to multiple codewords instead of one through soft assignment.
Soft assignment methods can be further broken down into two categories: combina-
torial and contrasting. Combinatorial methods express features as a combination of
the codewords while constrasting methods describe features by alluding to the dif-
ferences between features and codewords. Here, some common approaches of each
soft assignment methods that have appeared in the action recognition literature are
considered.

Combinatorial Features can be expressed as a combination of all or just a few
codewords in the codebook. To naively encode a feature vector based on all code-
words would yield an unreliable feature assignment to the codespace, especially the
linkages that are made with distant codewords [97]. Thus, a select number of code-
words in the codebook should be considered. The weight to assign the degree of
membership of feature, f , to codeword, ci, can be determined by solving the follow-
ing optimization problem [130]:

arg min
c
‖f − Cc‖22 + λψ(c), (3.6)

66

3.2 Encoding Methods CHAPTER 3. IMAGE REPRESENTATION

where C = [c1 . . . ck] is a codebook with k codewords ci for i = 1, . . . , k, and λ
is a constant that controls the strength of the regularization term ψ(c). Some ex-
amples of assignment methods that assign features, f , to codewords, c, using (3.6)
include: orthogonal matching pursuit (OMP) [176], sparse coding (SpC) [210], local
coordinate coding (LCC) [217], and locality-constrained linear coding (LLC) [192],
which differ by their regularization term, ψ. The regularization term enforces vary-
ing properties of c.

The orthogonal matching pursuit (OMP) approximates c by considering the
number of nonzero elements of c, the l0-norm of c. Unfortunately, l0-norms are
non-convex and to obtain a solution to (3.6) with ψ(c) = ‖c‖0 requires some heuris-
tic strategy. Thus, to counter the non-convexity of the l0-norm, the regularization
term in (3.6) can be replaced with an l1-norm (i.e. ψ(c) = ‖c‖1), which is referred
to as sparse coding (SpC).

It was empirically observed that SpC is helpful when the codewords are local
(i.e. when non-zero coefficients are assigned to codewords (or bases) near the feature
vector (the data to be encoded)) [192, 217]. Since this locality is not guaranteed the
way (3.6) is set up in SpC, the locality constraint of SpC can be explicitly enforced
by modifying the regularization term as ψ(c) = ‖ê � |c|‖1, such that 1>c = 1 as
in local coordinate coding (LCC)4. Unfortunately, SpC and LCC require solving an
l1-optimization problem, which is computationally expensive and problematic for
large-scale problems. As a result, a practical assignment scheme called the locality-
constrained linear coding (LLC) [192] was designed as a fast-implementation of LCC
by defining the regularization term as ψ(c) = ‖e � c‖22, such that 1>c = 1 for
e = exp

(
ê
σ

)
, where e ensures that similar patches have similar codes by assigning

weights proportional to how similar each codeword is to the feature vector.

Among various soft combinatorial assignments that were introduced in this sec-
tion (see Table 3.1 for a summary), LLC is the most popularly used for its fast
implementation. Put simply, LLC assigns each feature as a linear combination of
m-nearest codewords in the codebook of size k for m � k ∈ Z+. As a point of
comparison, note that VQ and LLC base their assignments on the 1-nearest and m-
nearest codewords, respectively. However, the weighted sum of multiple codes allow
LLCs to better capture the relationship between similar descriptors that share the
same codewords than the hard assignment quantization methods [192]. Although
LLC is faster than other combinatorial methods, the least square problem (3.6) that
needs to be solved to find the m nearest words remains a computational burden of
the LLC combinatorial assignment method.

Unlike the combinatorial assignment methods that were introduced earlier, the
localized soft-assignment [97] does not involve solving the least-squares problem

4ê in LCC and LLC denote dist(f , C) = [dist(f , c1) · · · dist(f , ck)]>, where dist(f , ci) is the
Euclidean distance between f and ci for ci ∈ C.

67

3.2 Encoding Methods CHAPTER 3. IMAGE REPRESENTATION

(3.6), rather a normalized weight is assigned with respect to m-nearest codewords
for m < k in a codebook of size k. Although it has a computational advantage over
LLC, and is the most computationally efficient combinatorial assignment approach,
with a comparable accuracy rate, a constant value that determines the softness of
the assignment is present as a free parameter.

Assignment Type Regularization Term ψ(c)

Orthogonal Matching Pursuit (OMP) ‖c‖0
Sparse Coding (SpC) ‖c‖1
Local Coordinate Coding (LCC) ‖ê� |c|‖1 such that 1>c = 1

Locality-Constrained Linear Coding (LLC) ‖e� |c|‖22, where e = exp
(
ê
σ

)
Table 3.1: List of regularization terms for combinatorial soft assignment meth-
ods. The coefficients that determines the degree of membership between fea-
ture f and codeword ci is determined by solving the least-squares problem:
arg minc ‖f − Cc‖22 + λψ(c) given a codebook C = [c1 · · · ck]. Assignment
type varies with regularization ψ. ê in LCC and LLC denotes dist(f , C) =
[dist(f , c1) · · · dist(f , ck)]>, where dist(f , ci) is the Euclidean distance between f
and ci, and σ in LLC is a constant that controls the weight of ci for 1 ≤ i ≤ k.

Contrasting Alternate to analyzing direct affiliations between features and code-
words, dissimilarities between descriptor mean and codewords can provide useful
information. Some examples of this type of soft assignment encoding methods are
Fisher vectors (FV) and vector of linearly aggregated descriptors (VLAD). Here,
FV and VLAD will be examined in detail as well as their relationships.

Fisher vectors (FVs) [62] are soft assignment methods that are derived from
Fisher kernels (FKs) [196]. FVs rely on a codebook defined using a generative
model (e.g. GMMs) such that the set of training features can be described by the
gradient of the log-likelihood. A Fisher kernel, which measures the similarity be-
tween two sets of data, training and test, is defined as the product of the gradient
of the log-likelihood functions of the sets and the Fisher information matrix. Fi-
nally, the Fisher vectors are obtained by concatenating the derivatives of the Fisher
vectors with respect to the mean and the covariance. The use of Fisher kernels
allows use with any kernel-based classifiers, such as SVMs. Since Fisher vectors in-
clude information on deviation and covariance using GMMs, first- and second-order
statistics of the feature descriptors are encoded providing generative information
[188]. Like generative models, FKs are also capable of processing data of varying
lengths (i.e. FK support addition or removal of data) and like discriminative meth-
ods, FKs have flexible criteria and yield better results. The number of Gaussians

68

3.2 Encoding Methods CHAPTER 3. IMAGE REPRESENTATION

selected at the codebook generation step can affect the smoothness/sharpness of the
histogram. As the number of Gaussians increase, there would be less descriptors
assigned to a Gaussian with a significant probability. Noting that no descriptor
assigned to some Gaussian yields a zero gradient vector, there would be more Gaus-
sians that are not assigned to any descriptors. As a result, the histogram would be
sharp around zero (cf. Figure 3.13 (a)-(c)). To reduce the sensitivity of FVs to the
number of Gaussians, FVs can be improved into an improved FV (iFV) [131] by
applying power-normalization to each element in FV. To ensure that the quantiza-
tion is not affected by a free parameter, l2 normalization is applied to iFV (to be
discussed in greater detail in the normalization section). That is, the dependency
on a parameter that represents the object-to-background ratio, where small objects
with a small parameter are not represented well, can be removed. The posterior
probability calculation that is involved in FV and iFV slows down the computation,
but is compensated through its use of small codebook.

Vector of Linearly Aggregated Descriptors (VLAD) [65] is another quantization
method based on dissimilarities between new features and codewords that appear in
action recognition and detection algorithms [63]. VLAD encoding methods typically
rely on a codebook generated using k-means clustering, but GMMs can be used as
well. The VLAD representation is obtained by summing, for each codeword, the
differences between the feature vectors and the codeword, where each feature vector
is associated with the nearest codeword in the codebook. That is, c =

∑k
j=1 fi − cj,

where cj is the closest codeword to local feature fi. VLAD can be perceived as
a simplified version of FV in that VLAD only keeps the first-order statistics (i.e.
the mean) as opposed to first- and second-order statistics in FV. The additional
second-order information in FVs typically lead to better performance than VLAD.
However, VLAD can overcome the difference in the case that features appear more
densely in the space of interest and thereby yield a more stable codebook [130].
Consequently, with a set of densely sampled features, it would be more beneficial to
encode via VLAD rather than FV since the second-order statistics do not assist in
obtaining higher accuracy, but adds computational cost.

Discussion on Assignment Methods

The high-order statistical information that the encoding methods retain (e.g. dif-
ference of means and variances in FV vs. difference of means in VLAD) allows
soft assignment methods to better capture the distribution shape of the descriptors
in the feature space than hard assignment methods [130]. However, storing more
information comes at a cost of higher dimension. Notice that the final dimensions
of VQ, LLC, FV, and VLAD, are k, k, 2dk, and kd, respectively, where d is the
dimension of the descriptor and k is the codebook size (i.e. number of clusters if
based on k-means clustering and number of mixture if based on the GMM). Thus,
the computational cost of training FVs tend to be much larger than any other en-
coding method mentioned in this paper and often requires feature reduction in its
subsequent steps.

69

3.2 Encoding Methods CHAPTER 3. IMAGE REPRESENTATION

Figure 3.13: (a)-(c) Comparing L2-normalized Fisher vectors (FVs) with a different
number of Gaussians: (a) 16, (b) 64, and (c) 256 Gaussians. (c)-(d) Comparing
L2-normalization with power normalization: (c) L2-normalized FV, and (d) power-
normalized FV. Redrawn from [131].

70

3.2 Encoding Methods CHAPTER 3. IMAGE REPRESENTATION

3.2.3 Pooling and Normalization

Some algorithms face too much repeated data or inconsistent representations of the
data. Thus, further processing is needed to reduce and stabilize the data through
pooling and normalization. Here, some common pooling and normalization oper-
ations that appear at the encoding stage are examined. Their role and effects in
various quantization methods will be discussed as well.

Pooling

Processing responses of all features can be expensive. Thus, the statistics of the fea-
tures can be aggregated (or pooled) at various regions to yield a summary statistic
(e.g. histogram). These summary statistics tend to be much lower in dimension and
prevents over-fitting of the data. Furthermore, data with large variations can be
condensed into a more compact representation by either removing or weighing the
outliers less. Thus, an ideal pooling method must preserve important information
and discard irrelevant materials while allowing invariance to small transformations of
the input [18]. Typical pooling methods include: max-, sum-, and average-pooling.
The feature with the largest response is chosen in max-pooling, and the responses are
combined additively or averaged in sum-pooling and average-pooling, respectively.
The appropriate pooling operation depends on the sampling method, features type,
and codebook size [18]. Max-pooling is the preferred method for sparsely sampled
features [18, 150].

Although max-, sum-, and average-pooling are simple ways to aggregate data,
they have some obvious drawbacks. Responses that are slightly weaker than the
strongest are discarded in max-pooling even though their weaker responses could
provide additional useful information. Every response within a region is considered
in sum- and average-pooling with equal importance, which would be undesirable
since the responses with low magnitudes can down weight the responses with high
magnitudes. Consequently, instead of considering one or all responses in a region,
a probabilistic form of average-pooling and a weighted response can be considered
during training and testing phases, respectively, as in stochastic pooling [222]. The
probabilities and the weights in stochastic pooling are determined by the magnitude
with respect to other responses within the region (see Figure 3.14c). Alternatively,
other mixture of pooling methods (e.g. taking the max over the fraction of all avail-
able feature points) can sometimes yield more accurate results [18].

The aforementioned pooling techniques aggregate data over some pre-defined
region disregarding spatial layout and temporal order. At a global scale, spatial
invariance can be beneficial since the location of an action within a video should
not change the class of an action. However, the spatial layout at a local scale, such
as shape and location of body parts with respect to each part, can provide crucial
information [127]. Motivated by the fact that varying spatial scale retains the order
of the features in locally orderless images (or histograms) [80], spatial pyramid pool-

71

3.2 Encoding Methods CHAPTER 3. IMAGE REPRESENTATION

(a) General region Ri =
{p1, . . . , pK}

(b) A concrete example of
Ri = {1.6, 0, 0, 0, 0, 0, 0, 0, 2.4} (c) Normalized Ri

Figure 3.14: Illustration of pooling regions with (a) general responses, (b) an exam-
ple of responses in region Ri, and (c) a normalization of (b).

Pooling Method
Equation for Pooling Region Pooled value from

Ri = {p1, . . . , pK} Ri = {1.6, 0, 0, 0, 0, 0, 0, 0, 2.4}

Max maxk {pk} max {1.6, 0, . . . , 0, 2.4} = 2.4

Sum
∑K

k=1 pk 1.6 + 0 + · · ·+ 0 + 2.4 = 4.0

Average 1
K

∑K
k=1 pk

1
9

(1.6 + 0 + · · ·+ 0 + 2.4) = 0.44

Stochastic at training [222] pk with P (pk) = pk∑
k pk

1.6 or 2.4 with prob. of 0.4 and 0.6, resp.

Stochastic at testing [222]
∑K

k=1wkpk, where wk = pk∑
k pk

0.4 · 1.6 + 0 · 0 + · · ·+ 0 · 0 + 0.6 · 2.4 = 2.08

Table 3.2: Summary of pooling methods. Refer to Figure 3.14b for an illustration
of the example in the rightmost column.

72

3.2 Encoding Methods CHAPTER 3. IMAGE REPRESENTATION

ing [91] employs a hierarchy of rectangular windows to preserve spatial orders. It
partitions each frame of a video into increasingly finer spatial subregions and com-
putes the histograms of local features from each sub-region to concatenate into a
single final vector [192]. Reconsideration of spatial order have shown to strengthen
the descriptive power of the features. Pyramid pooling can be extended to the
spatiotemporal domain from the spatial domain by partitioning videos into increas-
ingly finer spatiotemporal subregions instead of spatial subregions [88, 178, 187].
This variation would preserve both the spatial as well as temporal orders of the
features for finer discrimination between actions with similar structure that vary in
temporal sequence (e.g. fall down vs. get up).

Pooling regions can also be more meaningfully defined by identifying regions that
are more likely to contain actions (or actionness [23]) (see Figure 3.15). In fact, it
was confirmed that pooling from a ground truth pose mask improves the accuracy of
action recognition algorithms [66]. There are many ways of explicitly decomposing
videos. One intuitive way would be to split the video into foreground/background
[178]. In a similar manner, action-, actor-, or object-specific detectors can be applied
per frame of the video to detect actions, actors, or specific objects [178]. One canny
approach restricts pooling regions to areas that the human observers look at by
collecting the human eye movement using an eye tracker as they view a video [183].
Alternatively, features can be pooled from saliency regions5. Here, the premise
is that saliency regions are likely to contain an actor. Various combinations and
variants have appeared in literature to create a binary or real-valued saliency map
(e.g. interest point detectors [6, 168], structure tensors [183], SOEs [38]). Features
pooled from different salient regions but the same fixed grid segmentation (as in
Figure 3.15) would have low similarities, especially if these features correspond to
actions with spatial change over time. Thus, pooling from saliency regions allow
features to undergo a more fair comparison as they are aggregated from similar
regions. Furthermore, real-valued saliency maps [23, 38, 168] can be used as weights
since the features pooled from these regions are that much likely to contain an action.

Normalization

To ensure consistency amongst the collected data, a normalization procedure can
be applied to a database of features. Some common normalization techniques in-
clude [130]: l1-, l2-, power-, and intra-normalization. As its name suggests, in l1-
and l2-normalizations, the features are divided by the l1- and l2-norms, respec-
tively, of the vectors. The power-normalization [131] computes the sign root of
each element. That is, the power-norm of an encoded vector c(x) is defined as:
‖c(xi)‖ = sign(xi)|xi|α, where 0 ≤ α ≤ 1, for xi ∈ x. The operation of power has
the tendency to reduce the difference between a large value and a small value in

5Here, saliency information is used to pool features rather than to sample them. That is,
saliency information is used to select a few features that will be used to train or test the classifier
after they have been extracted and represented as some feature vector.

73

3.2 Encoding Methods CHAPTER 3. IMAGE REPRESENTATION

(a) Action changing in spatial lo-
cation in a single video sequence
highlighted in red.

(b) Fixed Grid Segmentation vs. Dynamic
Segmentation

Figure 3.15: Comparing fixed grid segmentation and dynamic segmentation on a
video that contains an action that has spatial variation. The action words (green
histograms) fall in different cells (purple region followed by cyan region) of the
fixed grid (left) as the action changes spatial location throughout the sequence.
On the other hand, the action words remain in the same (red) region in a video
that is segmented dynamically (right). Redrawn from [6].

a histogram (cf. Figure 3.13 (c)-(d)), which results in a smoothing of a histogram
[130, 131]. This smoothing effect can allow more frequently occurring codewords to
have less impact, while a less frequently occurring codeword has more impact, which
would be useful in data obtained through dense sampling especially if majority of
the features correspond to the background. The power-normalization technique can
be combined with l1- or l2-normalization techniques as in iFV.

Intra-normalization [4] is different from other normalization techniques in that
it is specific to codebook-based methods. Each codeword (or the kth Gaussian)
is perceived as a block and l1- or l2-normalization is applied to each block. Intra-
normalization is an effective way of balancing the weight of different codewords
instead of being bias towards bursty features [4]. Burst of features can occur in
features that contain repeated structures, which are prevalent in the background,
as would be in the case of data obtained through dense sampling. Thus, intra-
normalization has shown to be helpful in suppressing irrelevant information (e.g.
background information) and putting greater emphasis on useful information espe-
cially in features obtained through dense sampling [130]. On the contrary, under
the assumption that the data obtained through sparse sampling correspond to in-
formation that is a crucial component of an action, intra-normalization has shown
to be decrease the discriminative power of action-related codewords degrading the
final performance of the recognition algorithm [130].

3.2.4 Discussion on Encoding Methods

The order, choice, and combination of codebook generation, assignment, pooling,
and normalization can all affect the final outcome of the classification problem.
Even though the major stages of encoding were presented as: codebook generation,
assignment, pooling and normalization, it does not suggest that the optimal perfor-

74

3.2 Encoding Methods CHAPTER 3. IMAGE REPRESENTATION

mance will be attained by following this exact sequence of steps. In fact, pooling
and/or normalization can appear at any stage of encoding, if either or both stages
are deemed helpful at all.

It was mentioned in the codebook generation section that increasing the size
of the codebook (i.e. the number of codewords) to a certain point improves the
accuracy of the recognition. Furthermore, it was pointed out that soft contrasting
assignment methods retain richer information between codewords and feature vec-
tors (e.g. dissimilarities between features and codewords). Together, they allow soft
contrasting assignment methods to allow for a smaller codebook than other assign-
ment models to achieve a similar level of performance [130].

In the normalization section, it was briefly discussed that power-normalization
has a smoothing effect on histograms. When power-normalization is combined with
sum- or average-pooling, a very good result can be obtained since sum-pooling pro-
duces sharp and unbalanced histogram. Thus, the smoothening effect of power-
normalization and the sharpening effect of sum-pooling pair well together to balance
the smooth-sharp effects. Noting that FVs are based on a codebook constructed us-
ing GMMs, FVs implicitly perform an average pooling as it computes the first-order
statistics to obtain the FV. As a result, FVs have been shown to perform well with
average-pooling [39]. Consequently, power-normalization is the most well-suited nor-
malization method with FVs [131].

A synergistic relationship can be observed between a well-chosen pair of assign-
ment and pooling methods. For assignment models that pursue a sparse representa-
tion, the optimal pooling method is via max-pooling [150]. Max-pooling couples well
with sparse data since the distance between the nearest codeword and the feature
vector is significantly closer than with other codewords inducing a strong response.
The strong response is preserved and weaker responses are discarded through max-
pooling [58]. In fact, it was empirically confirmed that SpC, an assignment model
that pursues a sparse representation, and LLC, an assignment method that eventu-
ally leads to sparsity through its locality constraint, is best pooled via max-pooling
[192, 210].

Another factor that cannot be overlooked when choosing the type of encoding
is the type of classifier in the subsequent step. That is, to use a linear SVM over
non-linear SVMs for its efficiency and smaller memory requirement, l2-normalization
would be the preferred normalization method since the inner product of any vector
with itself is an identity in l2-normalization, which ensures that the vector com-
pared to itself is the most similar. This trait warrants stability during training
[130, 192]. Thus, although the sharp characteristic induced by l2-normalization on
FVs can be resolved via l1-normalization, power-normalization is preferred since l1-
normalization suggests the use of non-linear SVMs as opposed to linear SVMs in
the succeeding classification step [131].

75

3.3 Feature Post-processing CHAPTER 3. IMAGE REPRESENTATION

There is a plethora of choices for each step in the encoding framework. The
selection of encoding can greatly impact the final classification performance [22].
Since each choice within the pipeline are highly inter-related, they should be chosen
with care. Although many gaps have been filled to determine which combination
would yield the most ideal encoding framework (e.g. FVs with sum-pooling, power-
and l2-normalization for linear SVMs), extensive research is still in need to bridge
the theoretical gap between all existing choices within each step.

3.3 Feature Post-processing

Extracted features tend to have high dimensionality, correlated, and/or vary in du-
ration. High dimensionality makes training difficult and computationally expensive
at the classification stage. Redundant information could add bias in the training
data affecting the accuracy of the algorithm. Difference in temporal duration or
action execution rate can cause incorrect comparison of the data (e.g. extending
vs. contracting arm in boxing have opposing motions). Thus, although it is not
necessary, many recognition algorithms can benefit from dimensionality reduction,
removal of redundant information, and/or temporal alignment of the videos.

There has been extensive research in the area of dimensionality reduction [179].
One of the oldest and most widely used post-processing procedure in action recog-
nition and detection is Principal Component Analysis (PCA) [29, 81, 201]. PCAs
use orthogonal transforms (via computing the eigenvalues and eigenvectors of the
covariance matrix of the feature vectors) to capture the variation amongst the fea-
tures using principal components. Original features can be represented by a linear
combination of principle components, which are a set of linearly uncorrelated vari-
ables. These principal components are computed in decreasing order of importance,
where the first principal component accounts for majority of the variation in the
original data. Thus, the number of used principle components is typically less than
the number of original variables resulting in dimension reduction. The ability of
PCA to uncorrelate the data saves computation cost by removing redundancy [196].

Features can be further processed such that they are more distinct while differ-
ing by the same amount. Variance between the data can be unified by rescaling the
data. Using the eigenvalues obtained at the PCA stage, each feature, fi ∈ Rd, can be
rescaled by its respective eigenvalue, λi for i = 1, . . . , d, to ensure that each feature
has a unit variance. This process of rescaling the feature is referred to as whitening
(i.e. fwhiteni = 1√

λi
fi). It is important to keep in mind that some eigenvalues tend to

be numerically close to zero, especially the latter few in a set of eigenvalues arranged
in descending order. Thus, it is common practice to add a small constant, ε, to the
eigenvalues before the features are rescaled (i.e. fwhiteni = 1√

λi+ε
fi) to prevent data

inflation or numerical instability.

Within the same action, the temporal duration of the snippet containing the

76

3.4 Final Remarks CHAPTER 3. IMAGE REPRESENTATION

single action can vary due to variations in action execution rate or different frame
rate of videos. Dynamic time warping (DTW) can be used to align sequences with
variable durations [60, 94, 101, 182]. DTW aligns the two time series by warping the
time axes to align the samples to the corresponding points. It simultaneously takes
into account a pairwise distance between corresponding frames and the sequence
alignment cost using dynamic programming. A low alignment cost results when the
two sequences are segmented similarly in time and performed at similar rates.

Post-processing is not necessary for all methods and is seldom done on many
encoding methods other than FV-based methods [130]. However, empirical evalua-
tions show that applying PCA-whitening greatly improves algorithms that do not
usually apply PCA-whitening, such as VQ and LLC-encoded methods [130].

3.4 Final Remarks

In this chapter, three major steps that are involved in representing images were
examined: feature extraction, feature encoding, and feature post-processing. The
feature extraction stage and the encoding stage can occur once or multiple times as
needed before it enters the final classification stage [67, 123]. Furthermore, although
dimensionality reduction may improve the accuracy and efficiency of an algorithm,
it is not a necessary procedure and can occur before or after the encoding stage.

77

Chapter 4

Classification

Once a raw video has been transformed into a set of features representative of an
action, the query features must be classified. A set of training data (labelled or
unlabelled) can be used to categorize the test data into some pre-defined class. The
action class of a query data can be assigned to a single class using deterministic
models or to a set of classes by modelling probability distributions between classes
using probabilistic models (see Figure 4.1). We will begin by examining how one
could measure the similarity/dissimilarity between features in section 4.1. Then
some common deterministic and probabilistic models that appear in the literature of
action recognition and detection will be covered in sections 4.2 and 4.3, respectively.

Figure 4.1: General breakdown of the types of classifiers that appear in various
action recognition algorithms. Features can be classified using a deterministic or
probabilistic model. While deterministic models assigns query features to one class
or another, probabilistic models learn the probability distribution over the set of
classes to use them to make predictions on the query features.

4.1 Comparison Metrics

Given a pair of samples, one must measure how similar (or dissimilar) two patterns
are in order to cluster similar (or dissimilar) training samples together (or apart) or
to associate (or dissociate) the query data with the same class as the training data.

78

4.1 Comparison Metrics CHAPTER 4. CLASSIFICATION

One way to compare sets of data would be to measure the distance between the two.

The Lp-norm (or Minkowski metric), dLp , is one of the most general classes of
metric that measure dissimilarity between two n-dimensional features f ,g ∈ Rn,
which is defined as:

dLp(f ,g) =

[
n∑
i=1

|fi − gi|p
]1/p

, (4.1)

where the value of p ∈ Z+ determines the type of distance that is measured between
f and g. p = 1 measures the shortest distance between f and g, while p = ∞
measures the largest distance between the projected distances of f and g (see Figure
4.2). When p is set to 2, L2-norm is the familiar Euclidean distance, which is used
in various algorithms [29, 88, 94, 101, 191, 200, 213].

Figure 4.2: Illustration of the Lp-norm with varying values of p measuring the
distance from the origin to point g, a unit away on the coordinate axes. The L1-
norm, illustrated in white, is the shortest distance from the origin to point g while
the L∞-norm is the maximum distance between the projected distances of the origin
and g onto each of the n-coordinate axes. Redrawn from [33].

While the Euclidean distance is a widely used comparison metric, it is only useful
if the data are isotropic and distributed evenly along all directions in the feature
space. A common way of standardizing data with different measurements is to apply
some weight. A weighted Euclidean distance that uses the mean of the variables as
its weight is referred to as the chi-square distance, dχ2 , which is defined as:

dχ2(f ,g) =

(
1

2

n∑
i=1

(fi − gi)2

fi + gi

)1/2

.

79

4.1 Comparison Metrics CHAPTER 4. CLASSIFICATION

Alternatively, correlated data with varying scales can be accommodated by con-
sidering the covariance as in the Mahalanobis distance, dM , which is defined as:

dM(f ,g) =
[
(f − g)Σ−1(f − g)>

]1/2
,

where Σ is the covariance matrix corresponding to the typical distribution of interest
points in the training data [87]. Thus, when the data is scattered in all directions
around the centre of the cluster, the convariance matrix is a diagonal matrix, which
is the normalized Euclidean distance and an identity covariance matrix would be
the standard normalized Euclidean distance. The Mahalanobis distance provides a
useful measure to calculate the amount of separation between two classes of features
(e.g. Hu moments [16] or Fourier projections of MHVs [201]) by measuring the dis-
tance between their respective centres [31].

There are various comparison metrics that measure the difference (or similarity)
of two probability distributions. The Kullback-Leibler (KL) distance, dKL, which
measures the difference between two probability distributions, is defined as:

dKL(f ,g) =
n∑
i=1

fi · ln
(
fi
gi

)
.

The KL distance is nonzero and is equal to zero if and only if f = g [33]. KL
distance is used in various action recognition algorithms [96, 123]. KL distance lacks
symmetry (i.e. dKL(f ,g) 6= dKL(g, f)), which is undesirable in action recognition
algorithms because two features should be equally similar or dissimilar to be (part
of) an action regardless of the order of comparison (i.e. action a is similar to action b
as much as action b is similar to action a). Asymmetry can be overcome by redefining
the KL distance as d′KL(f ,g) = dKL(f ,g) + dKL(g, f) [123]. Alternatively, the KL
distance can be modified into:

dJ(f ,g) =
n∑
i=1

(fi − gi)(ln fi − ln gi),

referred to as the Jeffreys divergence, which is numerically stable, symmetric, and
robust to noise [134, 144].

The Bhattacharyya coefficient, dB, which measures the overlap between two prob-
ability distributions is defined as:

dB(f ,g) =
n∑
i=1

[fi · gi]
1/2.

The Bhattacharyya coefficient, which is not to be confused with the Bhattacharyya
distance, is bounded below by zero and above by one. Zero indicates no overlap and
one indicates a perfect match between two normalized distributions f and g. The
bounded nature of the Bhattacharyya coefficient makes the measure robust to small

80

4.1 Comparison Metrics CHAPTER 4. CLASSIFICATION

outliers, which is favourable in action recognition application due to occlusion that
could affect the overall distribution [28, 211].

The partial matches between two histograms in their corresponding bins can be
modelled using a histogram intersection (HI) [172]. Histogram Intersection (HI)
[172], dHI , is defined as:

dHI(f ,g) = 1−
∑n

i=1 min (fi, gi)∑n
i=1 fi

.

Interestingly, when the two histograms have the same size (i.e.
∑

i fi =
∑

i gi), then
the histogram intersection of f and g is equivalent to the normalized L1-distance
[172].

So far, all the measures that were mentioned in this section measured the sim-
ilarity (or dissimilarity) between histograms bin-to-bin (i.e. compare fi and gi ∀ i
but never fi and gj for i 6= j). This forces the two histograms to have the same
bin sizes, which could cause the histogram to lack the discriminating power due to
coarse binning or grouping of similar features due to fine binning. Thus, the flexi-
bility for histograms to have different sizes and the ability to compare them across
bins could be more robust and more useful [144].

The Earth Mover’s distance (EMD) [143] is a cross-bin comparison metric that
computes the minimal amount of work needed to transform one distribution to an-
other. EMD can be broken down into a two-step process: (i) given two distributions,
f ∈ Rm and g ∈ Rn, find the flow with the smallest overall cost of transferring the
distributional masses from f to g (or from g to f), then (ii) use the flow to determine
the amount of work required to transfer the distribution masses. To find the optimal
flow, φ∗, is to solve the following transportation problem:

φ∗ = arg min
φij

m∑
i=1

n∑
j=1

φijδij, (4.2)

where φij is the flow between fi and gj for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and δij is the
“ground distance” between fi and gj ∀ i, j, which can be any distance measure
between single elements (e.g. L1-norm [144], L2-norm [144, 218]) depending on the
features. Since (4.2) is a transportation problem (see Figure 4.3), the optimal flow,
φ∗, can be found using linear programming [144]. Then the EMD between two
histograms, f and g, is defined as the work normalized by the total flow:

dEMD(f ,g) =

∑m
i

∑n
j=1 φ

∗
ijδij∑m

i=1

∑n
j=1 φ

∗
ij

,

where the normalization factor (total flow) is equivalent to the total weight of the
smaller distribution, which prevents the measure from favouring the smaller distri-
bution [144].

81

4.1 Comparison Metrics CHAPTER 4. CLASSIFICATION

(a) Transportation Problem

(b) Solution to the Transportation Problem

Figure 4.3: Example of the Earth Mover’s Distance (EMD). To calculate the EMD
of f = [0.4 0.2 0.2 0.1 0.1]> and g = [0.6 0.2 0.1]>, (a) convert f and g into a trans-
portation problem, where the cost (or ground distance), δij between fi and gj for
1 ≤ i ≤ m, 1 ≤ j ≤ n is pre-defined. (b) The optimal flow φ∗ of the transporta-
tion problem is found through linear programming. The columns of optimal flow,
φ∗ = [φ1 φ2 φ3], represents the amount of flow φ3 that is transferred from node φ2

to node φ1. dEMD(f ,g) = 0.2·0+0.3·3+0.1·1+0.1·4+0.1·1+0·5+0.1·2
0.2+0.3+0.1+0.1+0.1+0.1

= 1.7
0.9

= 1.8889.

82

4.2 Deterministic Models CHAPTER 4. CLASSIFICATION

There are many cross-bin similarity measures [144], but only the Earth Mover’s
distance is surveyed here. Other cross-bin measures are omitted since they are not as
frequently used in the field of action recognition and detection. Comparison metrics
of two histograms f and g that were described in this section are summarized in
Table 4.1.

Metric Type Comparison Metric, d(f ,g)

Lp-norm (dLp) [
∑n

i=1 |fi − gi|
p]

1/p

χ2-distance (dχ2)
(

1
2

∑n
i=1

(fi−gi)2
fi+gi

)1/2

Mahalanobis distance (dM)
[
(f − g)Σ−1(f − g)>

]1/2
Kullback-Leibler distance (dKL)

∑n
i=1 fi · ln

(
fi
gi

)
Jeffreys divergence (dJ)

∑n
i=1 (fi − gi)(ln fi − ln gi)

Bhattacharyya coefficient (dB)
∑n

i=1 [fi · gi]
1/2

Histogram Intersection (dHI) 1−
∑n
i=1 min (fi,gi)∑n

i fi

Earth Mover’s distance (dEMD)
∑m
i=1

∑n
j=1 φ

∗
ij ·σij∑m

i=1

∑n
j=1 φij

, where φ∗ij is the op-

timal flow that minimizes the cost of∑m
i=1

∑n
j=1 φijδij, and δij is the ground

distance between each element in f and g

Table 4.1: Histogram Comparison Metric Summary. All metrics, but the Earth
Mover’s distance, described in this section measure similarity (or dissimilarity) be-
tween two histograms f and g bin-to-bin. Thus, f ,g ∈ Rn. The Earth Mover’s
distance compares the two histograms in a cross-bin manner. Thus, the sizes of the
two histograms can vary (i.e. f ∈ Rm and g ∈ Rn for m 6= n).

4.2 Deterministic Models

Query data can be assigned to one action class or another without considering the
probability distribution between classes of the training data in deterministic mod-
els. A set of training data can be learned in either a (i) lazy, or (ii) eager manner.
Lazy learning classifiers makes generalizations only when query data appears. Ea-
ger learning classifiers, on the other hand, makes generalizations using the training
data before it sees the query data. Thus, it takes more time to train eager learning
algorithms, but less time to predict the class of the test data than lazy learning al-
gorithms [31]. Here, some common lazy and eager learners that are used in various
action recognition and detection algorithms will be studied.

83

4.2 Deterministic Models CHAPTER 4. CLASSIFICATION

4.2.1 Lazy Learners

Lazy-based learning classifiers defer data processing until they receive a request to
classify an unlabelled test example [31]. The classifier waits for query data before
it makes any generalizations about the data. One common lazy learning classifier
used in action recognition is the k-nearest neighbour (kNN) classifier [94, 124]. It
determines the class of the test sample by growing a spherical region centred at the
sample until the region contains k ∈ Z+ training data. The test data is labelled by
the class with the majority vote in the enclosed space (see Figure 4.4) [31]. Many
earlier algorithms set k = 1, to find the nearest neighbour (i.e. template) to the
query (i.e. test) vector [34, 94]. The distance between the training set and the test
data can be obtained via a comparison metric mentioned in the previous section.
Thus, computing can be expensive with a large training set. When there are two
classes in the training set, an odd k value is used to avoid ties between the classes.
With more classes, larger k values are used since they are more likely to break the
ties [31]. Although the kNN classifier is simple to implement, it is prone to local
noise. Furthermore, with an increase in the number of features, more training data
is required leading to the case of curse of dimensionality. To avoid bias when there
are an unbalanced amount of training data from different classes or to assign more
weight on false negatives over false positives, the standard kNN algorithm can be
modified to assign a particular class to the test data if at least l of the k nearest
neighbours are in that class for l < k [31].

Figure 4.4: k-nearest neighbours with k = 5. A circular region (red) centred around
the test sample (star) is expanded until k = 5 samples (circles and triangles) are
contained within the circular region. The test sample is labelled as the same class as
triangle since there are more triangles (3) than circles (2) inside the bound region.

84

4.2 Deterministic Models CHAPTER 4. CLASSIFICATION

4.2.2 Eager Learners

Given a collection of training data, eager learning classifiers learn a model that
would generalize the data as soon as it becomes available before the test data must
be categorized. A model can be generated by partitioning the feature space of the
data into a set of decision regions (see Figure 4.5) [31]. These regions provide a
guideline to classify the query feature into one of the classes. The decision regions
are separated by decision boundaries, which can be described by a set of discrimi-
nant functions. Some eager learning algorithms that are commonly used in action
recognition and detection algorithms include: support vector machines (SVMs), Ad-
aBoost, and artificial neural networks (ANNs).

(a) Linearly separable data (b) Non-linearly separable data

Figure 4.5: Decision Boundaries. Red lines indicate the decision boundary, which
separates the samples of different classes (triangles and circles) into decision regions.
(a) A linear decision boundary is the simplest decision boundary, which can be
described by a linear (discriminant) function. (b) A non-linear decision boundary
can be obtained with a set of complex polynomials.

A support vector machine (SVM) is one of the most common supervised classi-
fication tools used in action recognition and detection, e.g. [63, 67, 69, 82, 88, 103,
107, 137, 147, 170, 173, 190, 186, 188, 211, 226]. An SVM is trained to find a hyper-
plane (or a decision boundary) that separates labelled data from two classes into its
respective groups. The best hyperplane is the one that separates the two classes with
the largest distance between the nearest point from each class to the hyperplane (see
Figure 4.6). Since action recognition involves classifying videos into multiple actions
(classes), a multi-class SVM must be employed, which can be done by applying the
one-versus-all approach [88, 225]. The one-versus-all approach takes the training
data from class k labelled as positive and the rest as negative examples to train the
kth model. Kernels enable implicit operation in a higher dimensional feature space,
where hyperplane separability may be possible. There are two types of kernels: (i)
linear, and (ii) non-linear. To determine what would be an appropriate kernel for
the algorithm, one should examine the ratio between the number of features and
the training data. A linear kernel is preferred when the number of features is large
(i.e. high dimensional feature space) (e.g. DT/iDT features) relative to the number

85

4.2 Deterministic Models CHAPTER 4. CLASSIFICATION

of training samples to prevent over-fitting in the feature space. When there are a
few features with a lot of samples, a non-linear kernel would be a better choice. Al-
though non-linear kernels typically achieve a lower error rate, linear SVMs are less
computationally expensive and require less storage than non-linear SVMs allowing
real-time detections possible [26, 210]. By adding more features, a linear SVM can
be used.

Figure 4.6: Support Vector Machine (SVM). Solid lines indicate the decision bound-
ary separating the samples of different classes (triangles and circles). Dashed lines
are lines parallel to the decision boundary closest to the data of one class. SVM
seeks a line that would maximize the margin, the distance between the dashed and
solid line (i.e. red line).

Adaptive Boosting (AdaBoost) is a learning algorithm that takes several weak
classifiers, classifiers that are slightly better than random guessing, and constructs
a meta-classifier. By assigning different weights to training samples, different clas-
sifiers would pay more attention to different samples. The weights of an individual
classifier is assigned depending on its accuracy [23]. This approach has been applied
with some success in various action recognition algorithms [36, 89, 96, 124].

Artificial neural networks (ANNs) are another widely used classification algo-
rithm. The artificial neuron (perceptron, or more generally referred to as units)
in each layer computes the weighted sum of its inputs. If the sum exceeds some
specified threshold, the unit outputs a value [31]. A unit models a linear discrim-
inant function partitioning the feature space using a decision boundary. Using a
multilayer network, nonlinearly separable functions can be learned (see Figure 4.7).
The network is trained via backpropagation, which involves repeatedly presenting
the training data to the network and adjusting the weights in the network to ob-
tain a desired output [31, 33]. The number of units in the hidden layers govern the
expressive power of the network [33]. A small number of hidden units is sufficient

86

4.3 Probabilistic Models CHAPTER 4. CLASSIFICATION

for well-separated or linearly separable patterns, but highly interspersed patterns
with complicated densities require more hidden units. While a large number of hid-
den units produces a discriminative network lessening the training error, training
becomes extremely time-consuming. Furthermore, it can lead to overfitting of the
data, causing random noise in the test data to be modelled and poor generalization
to the test data [31]. An ANN with too few hidden units would not have enough
parameters to fit the training data, yielding poor classification results on the test
data. Thus, finding an intermediate number of hidden units is key to obtaining good
classification results with such powerful classification tool.

ANNs and CNNs (mentioned in Section 3.1.2) have very similar architectures.
Both networks output class scores of a feature vector by processing the components
of a feature vector into a sequence of input, hidden, and output layers [33]. Each
layer consists of a set of units, where each unit in the hidden layer receives some
input, performs a dot product, and optionally follows it with a non-linearity. Based
on an assumption that input signals from the domain of interest (e.g. images) are
locally correlated (e.g. spatially neighbouring pixels), CNNs allow their receptive
fields of the hidden units to have a relatively local support [93], while more general
ANNs do not. This allows units in the hidden layers of a CNN to be connected
to a local neighbourhood of the previous layer, while all units in every layer of a
general ANN is allowed to be fully-connected. Fewer connections between units
significantly reduces the number of parameters (weights) that must be learned [93].
Consequently, fewer weights reduces the number of training that is required to cover
the space of possible variations. Furthermore, it reduces the amount of memory
required to store the weights in the hardware [93]. Remark, the last layers of a
typical CNN architecture can be fully-connected. This allows for an output of a
class, a class probability, or features that can be fed into another classifier (e.g.
SVM).

4.3 Probabilistic Models

Probabilistic models learn the probability distribution over the set of classes to de-
termine the probability of the query data belonging to each action class. These
probabilistic models can be broadly categorized into two types: general classifiers
and temporal state-space classifiers. General classifiers categorize features without
explicitly modelling variations in time while temporal state-space models use tem-
poral order information of features. Here, we look at probabilistic models that fall
under general or temporal state-space models.

4.3.1 General Classifiers

The relationship between features and their respective action class can be modelled
using probabilities. Here, we examine some common general probabilistic models
that have been implemented in the field of action recognition, such as the naive

87

4.3 Probabilistic Models CHAPTER 4. CLASSIFICATION

(a) Two-Layer Neural Network

(b) Linear Decision
Boundary

(c) Multi-layer Neural Network

(d) Arbitrary De-
cision Boundaries

Figure 4.7: Artificial Neural Networks (ANNs) with different number of layers.
While a two-layer neural network classifier (4.7a) is only capable of implementing
linear decision boundaries (4.7b), a multi-layer neural network (4.7c) with an appro-
priate number of hidden units can implement arbitrary decision boundaries (4.7d),
which do not necessarily have to be convex nor simply connected. Adapted from
[33].

88

4.3 Probabilistic Models CHAPTER 4. CLASSIFICATION

Bayes classifier, latent topic discovery models, relevance vector machines, and the
Bayesian network.

The naive Bayes classifier is one of the simplest probabilistic models that assigns
a feature, x, to some action class c by comparing the posterior probability P (ck|x)
∀ ck ∈ C [31]. Applying the Bayes’ rule, the conditional posterior probability can
be written as:

P (ck|x) =
P (x|ck)P (ck)

P (x)
, (4.3)

where P (x|ck) represents the probability of feature x (e.g. filter bank [24]) belong-
ing to class ck, P (ck) and P (x) represent probabilities of observing class ck and
feature x, respectively. P (x|ck), P (c), and P (x) can all be trained from observing
the distributions within the training set. The naive Bayes classifier makes a naive
assumption that the features are conditionally independent to one another given its
class (i.e. P (x1, . . . , xn|ck) = P (x1|ck) . . . P (xn|ck)). Then the test feature x can be
assigned to the class with the maximum a posterior probability P (c|x) [33], which
is formulated as

ck = arg max
ck∈C

P (ck|x) =
1

P (x)
arg max

ck∈C
P (x1|ck) . . . P (xn|ck)P (ck). (4.4)

Through the naive Bayes independence assumption, which may not necessarily be
true, naive Bayes classifier is a simple classifier that is a good candidate for imple-
mentation for its simplicity and efficiency.

Latent topic discovery models are statistical models that were originally pop-
ularized for the discovery of topics in a text. This approach can be extended to
discover any latent classes in a collection of data, such as actions in videos. Two
latent topic discovery models, probabilistic Latent Semantic Analysis (pLSA) [54]
and Latent Dirichlet Allocation (LDA) [15], have commonly appeared in various
action recognition algorithms [122, 191, 227] [122, 199]. pLSA and LDA model the
distribution of classes in sets of videos, such that the model can be used to classify
the latent topics (i.e. action classes) in the new videos. pLSA assumes that a video
sequence, vi, and a feature, fj, are conditionally independent given an action class,
ck, (see Figure 4.8a), then the action class of the test data v′ can be best described
by solving

c∗ = arg max
k
P (ck|v′),

which can be computed using the EM algorithm [122]. To determine a model that
best represents a mixture of actions that could occur in a single video, the most op-
timal action proportion in videos, p(ck|vi) for i = 1, . . . , N , must be learned. pLSA
learns the class mixture probabilities by going through each video in the training
set to describe the process of generating videos with action class distributions that
was in some video in the set.

The pLSA approach enforces the model to be stringent, placing new (unseen)
videos at points within the pre-defined action distribution, leading to an overfit

89

4.3 Probabilistic Models CHAPTER 4. CLASSIFICATION

model (see Figure 4.9) [15]. To overcome this stringency, LDA sets arbitrary topic
proportions (a prior probability distribution) θi for each video vi. To ensure that
the number of parameters to be learned does not grow linearly with the number of
videos in the training set, the mixing proportions of actions per video are controlled
by a parameter α, which is specified per set of videos (see Figure 4.8b). Then the
joint distribution of the action class mixture, θ, a set of classes c, and a set of
features, f , is given by:

p(θ, c, f |α, β) = p(θ, α)
K∏
k=1

p(ck|θ)p(fn|ck, β),

where β parameterizes the distribution of the features within a particular action
label (i.e. β corresponds to p(fi|ck)). Parameters α and β are found using the EM
algorithm for a given collection of video sequences [15]. The feature fj is classified
to be action c∗ if

c∗ = arg max
k
p(ck|fj, α, β). (4.5)

Since the number of topics is fixed to a particular value in LDA, it prevents over-
fitting from occurring, especially if a video contains a small amount of features to
train, since it can rely on the prior to give a more reasonable guess about the actions
for that video [122]. Conversely, if videos are known to produce a large amount of
features, then the data would dominate the priors. Finally, it is worth noting that
pLSA is more computationally efficient than LDA [108].

Relevance vector machines (RVMs) have an identical functional form as the de-
terministic model, SVM. It finds a hyperplane that separates the relevance vectors
into two classes. Different from SVMs, RVMs provide a probabilistic classification
instead of a deterministic decision. Furthermore, the hyperplane separates relevance
vectors, prototypical representations of classes (e.g. action class), instead of support
vectors (examples close to the decision boundary) [125]. RVMs tend to have a longer
training time than SVMs. However, since RVMs result in a sparser set of support
vectors, the computation time for test points is much less than on an SVM [13].

Some algorithms design probabilistic models using a Bayesian network suited to
incorporate the necessary variables to recognize the action [35]. Using a graphical
representation, a complex system can be decomposed into simpler parts to provide
a causal relationship between the variables. In addition, graphical models factorize
variables into several conditional probability distributions that are simpler to com-
pute [100, 171, 174]. For example, Figure 4.10 suggests the following factorized joint
probability:

p(θ, x, y, a, b, s, δ) = p(σ)p(s|δ)p(y|x, s, δ)p(b|a, s, δ)p(a)p(θ)p(x|θ),

where θ, x, y, a, b, s, δ are parameters that indicate the centroid, position and veloc-
ity of body parts, position and velocity of detections, appearance of body parts,
appearance of a detection, map of body parts to detects, and detection of body

90

4.3 Probabilistic Models CHAPTER 4. CLASSIFICATION

(a) pLSA (b) LDA

Figure 4.8: A graphical model of latent topic discovery models: pLSA and LDA.
A graphical model provides a layout of the causal and independent relationships
between each variables in a system. Shaded regions are observed and unshaded
regions are unobserved (hidden/latent) variables. (a) pLSA. pLSA assumes that
feature fj is conditionally independent of video vi given the action class ck. For each
video vi, a latent class ck is chosen from the video’s class multinomial distribution,
P (ck|vi) where k = 1, . . . ,M , to draw a feature fj from the class’ multinomial
distribution of the words, P (fj|ck). (b) LDA. For each video, the vector of topic
proportions, θi, is sampled according to a Dirichlet distribution with parameter α.
For each feature, fk, in a video, class ck is selected from the multinomial distribution
over the classes with parameter θ, p(ck|θ), to choose a feature fk from a multinomial
distribution conditioned on class ck, p(fk|ck, β). α and β are sampled once in the
process of generating a set of N videos, while fj and ck are sampled for every feature
in each video. Adapted from [15].

Figure 4.9: Latent topic discovery model comparison. The mixture of unigrams
places documents at the corners of the topic simplex as the model permits one topic
assignment to each document. pLSA and LDA, on the other hand, allow multiple
topics to be assigned to a document. Therefore, the empty circles (pLSA) and the
shaded area (LDA) lies within the topic simplex (triangle). In contrast to LDA,
which can place the document anywhere in the shaded region, the topics for pLSA
must be placed at one of the specified points. The smooth Dirichlet distribution
determined by parameter α determines the contour of the topic simplex. Redrawn
from [45].

91

4.3 Probabilistic Models CHAPTER 4. CLASSIFICATION

parts, respectively. Then each factor can be modelled through training, or by mak-
ing appropriate assumptions between variables (e.g. N labels si of M body parts
are equally likely to be detected and mutual independence implies that p(s|δ) =∏M

i=1 p(si|δi) = (1
N

)M). By combining probability and graph theories into the sys-
tem, uncertainty and complexity can be dealt with simultaneously [174].

Figure 4.10: A graphical model of the Bayesian Network (BN). A BN represents the
joint probability of the variables in a complex systems as a factor of simpler parts to
simplify the computation. In this graphical model of the BN, each node represents
a random variable (e.g. θ, x, y, a, b, s, δ) and each directed edge indicates causal
relationship between variables (e.g. x is dependent on θ). The joint probability of
the variables can be decomposed as a product of simpler parts: p(θ, x, y, a, b, s, δ) =
p(σ)p(s|δ)p(y|x, s, δ)p(b|a, s, δ)p(a)p(θ)p(x|θ). Redrawn from [35].

4.3.2 Temporal State-Space Classifiers

Features obtained from videos can be perceived as temporal sequential data. Tem-
poral state-space classifiers model temporal sequential data by assuming that ob-
servations are generated through some underlying hidden (or latent) state and they
utilize sequential information by acknowledging that states evolve over time. An ob-
servation corresponds to some feature vector and a hidden state represents an action
performance at a specific moment in time. Temporal state-space classifiers model
the relationships between state-to-state and state-to-observation using probabilities.
In this section, some common temporal state-space models that have appeared in

92

4.3 Probabilistic Models CHAPTER 4. CLASSIFICATION

the action recognition and detection literature will be reviewed.

An action can be perceived as a sequence of states that is directly influenced by
its previous state(s), and each state of the action can be observed by some feature
representation. Correspondingly, a video of an action can be modelled using the
Hidden Markov Model (HMM), where each state of an action corresponds to the
hidden/latent state, zt, with observation, ft (see Figure 4.11). Then the task of
action recognition/detection can be formulated by finding the most probable set of
sequences, Z = {zt|t ∈ Z+}, that corresponds to a set of observations, F = {ft|t ∈
Z+}. That is, maximize the joint probability of the paired observation and label
sequences:

P (c, f) =
n∏
t=1

P (zt|zt−1)P (ft|zt),

where P (zt|zt−1) and P (ft|zt) denote transition probabilities and emission probabil-
ities, respectively, for t = 1, . . . , n. The transition probability models the probability
of a state transitioning from zt−1 to zt, and the emission probability models the prob-
ability of observation ft being emitted from state zt. Transition probabilities can be
trained using k-means clustering [42, 135] for supervised data and the Baum-Welch
algorithm for unsupervised data [2, 61, 99, 200, 209]. Each HMM represents an
action category [61, 200, 209]. The observation can be of the entire body [2, 200], a
body part [61, 135], or an interest point (e.g. mesh [42], HOG [99]). The probability
that a sequence of hidden states would yield a set of observations is referred to as
the decoding problem [33]. The most likely action class that the test data would
belong to among the c HMMs, where c denotes the number of action classes, can be
evaluated using the Viterbi algorithm [2], or maximum likelihood estimation (MLE)
[99]. Since HMMs are designed to deal with time-sequence data, they are robust to
time scale shift and variance [209].

The features obtained from videos can be noisy and extracted at random inter-
vals. The hidden state corresponding to noisy data does not need to be constrained
to discrete variables, but can be estimated as continuous variables using Kalman
filters [202] [145]. A Kalman filter models each state variable as continuously dis-
tributed using a Gaussian distribution [145]. Since the convolution and the product
of a Gaussian also yields a Gaussian, all probabilities (transition and emission) are
also Gaussians. The Kalman filter works in a two-step process: the prediction step
and the correction step. At the prediction step, the Kalman filter estimates the cur-
rent (hidden) state, zt, along with its uncertainties and the future state, zt+1. At the
correction step, the weighted average of the new observation, ft+1, and the predicted
value is used to update the new hidden state zt+1. The new hidden state is assigned
with more emphasis placed on the predicted value if the new observation is deemed
unreliable (noisy), and the observation is more favoured if the process deem unpre-
dictable and unreliable [145]. The prediction and correction phases run recursively
to update the current estimate based on all of the past measurements. Kalman filters
are often used in conjunction with tracking-based algorithms [17, 32, 50]. Kalman

93

4.3 Probabilistic Models CHAPTER 4. CLASSIFICATION

Figure 4.11: Hidden Markov Model (HMM). The transition between states, zt to
zt+1, are represented by horizontal lines illustrating temporal causality between
states whose likelihood is represented by the transition probability, P (zt+1|zt). The
emission of a particular observation, ft, from a specific state, zt, is illustrated by the
vertical lines whose likelihood is represented by the emission probability, P (ft|zt). A
set of parameters - the initial state probability, transition probabilities, and emission
probabilities - constitute an HMM, which represents one action class. A test data
that matches an HMM with the highest probability is assigned to the class that the
HMM represents.

filters are not very capable of handling occlusion, therefore, require good foreground
segmentation [74].

A conditional random field (CRF) [84] is an undirected graphical model that is
used to calculate the probability of a label sequence given an observation sequence
(see Figure 4.12). The conditional probability is factorized into a product of real-
valued functions, where each function is described by log-linear combinations of
feature functions. That is, the conditional probability distribution of observation,
f , and state sequence, z, is described as:

P (z|f) =
1

Z0

exp

(
n∑
t=1

m∑
k=1

λkgk(zt−1, zt, f) +
n∑
t=1

m∑
k=1

µkhk(zt, f)

)
,

where Z0 denotes a normalization factor of all possible state sequences, and λk and
µk are associated weights of the feature functions, gk and hk, respectively. There
is a strong connection between HMMs and CRFs. That is, the feature function gk
coupled with λk is analogous to transition probabilities in HMMs, while µk and hk is
analogous to emission probabilities. Since CRFs directly model the conditional dis-
tribution over hidden states given the observations, the conditional independence as-
sumption between observations given the class labels to ensure tractability in HMMs
can be relaxed. This difference allows observations at different time instances to be
jointly considered, allowing CRFs to handle large contextual dependencies among
observations, multiple overlapping observations, and long-range interactions between
observations [110, 160]. Considering the context and long-term dependencies helps
remove ambiguities between similar actions (e.g. walk vs. jog) [23, 160]. CRFs gen-
erally require many training sequences to robustly determine all parameters [133].

94

4.3 Probabilistic Models CHAPTER 4. CLASSIFICATION

Figure 4.12: Conditional Random Field (CRF). In an HMM, observation ft only
depends on the current hidden state zt ∀ t (illustrated by blue links between hidden
states and observations). Therefore, successive observations are independent. CRFs,
on the other hand, directly model conditional distributions over hidden states given
observations at different time instants (illustrated by blue and red links). This capa-
bility allows CRFs to relax the independence assumptions between observations and
consider observations at different time instants. The undirected graphical model in
a CRF allows the family of probability of distributions to factorize into a given col-
lection of factors. HMMs, on the other hand, use a directed graphical model, which
factorizes the probability of possible assignments into local conditional probability
distributions.

A dynamic Bayesian network (DBN) [117] is a system that models the rela-
tionship between and amongst hidden and observation variables using a Bayesian
network with dynamic temporal states. That is, a Bayesian network in DBN models
the causal relationship between hidden variables, zit for i ∈ Z+, and observation vari-
ables, f jt for j ∈ Z+ at each state, t for t = 1, . . . , n (see Figure 4.13). The Bayesian
network structure at each state is repeated to keep calculations simple through its
periodic structure [100]. A system with a Bayesian network structure that changes
per state is referred to as a dynamic Bayesian multinet (DBM) [12], which is not
the focus here. HMMs (or Kalman filters) can be considered as special types of
DBNs [145]. While a DBN allows any number of hidden and observation variables
per state, HMMs (or Kalman filters) only allow one discrete (or continuous) hidden
and observation variables [100]. Although allowing more variables per state might
lead to a larger computational complexity, the Bayesian network structure allows
flexibility between variables, which simplifies the computation of the joint proba-
bility (i.e. some variables are independent from one another because some pairs
do not have a causal relationship in the physical world). The hidden variable, zit,
can represent body parts (e.g. head, hands, feet) [100], global and local activity
state of the actor [32], objects present [90] at state t and the observation variable
can represent extracted features (e.g. Hu moments [100], an MHI extension [205],
human poses [32]). One major drawback of DBNs is the inevitable need of a very
long training time [74].

95

4.4 Final Remarks CHAPTER 4. CLASSIFICATION

Figure 4.13: Dynamic Bayesian Network (DBN). The Bayesian network (BN) is
modelled in a sequential manner in a DBN, where the BN is the same for all states
1 ≤ t ≤ n. Like other temporal state-space models, each BN at state t has observed
(shaded) and unobserved (unshaded) variables. Different from other temporal state-
space models, however, a DBN can have k1 observed variables (i.e. f it are unobserved
variables for 1 ≤ i ≤ k1), and k2 unobserved variables (i.e. zjt are observed variables
for 1 ≤ j ≤ k2) per state t for k1, k2 ∈ Z+.

4.4 Final Remarks

In this chapter, various classification algorithms that have appeared in the field of
action recognition and detection were surveyed. A classifier determines the final
accuracy of the overall action recognition algorithm. Thus, it is important to choose
the right one. However, as stated by the No Free Lunch Theorem [204], it is a
difficult task to find a classifier that is guaranteed to perform well since there are
many factors to consider. Some factors to consider include: type of features, amount
of training data, cost of the function, prior distributions (for probabilistic models),
hyperparameters (e.g. type of norm in kNN classifier, number of hidden units, length
of training, and the training rate in ANNs). For example, while a linear SVM is
most suited for data with large number of features with a small amount of training
examples, a Gaussian kernel is better suited on data with a small amount of features
with an intermediate amount of training examples. While ANNs, on the other hand,
are able to model complicated class distinctions, they require overly large datasets
for training. Furthermore, while SVMs solve a convex problem, hence find a global
solution; ANNs generally do not share that feature. Overall, while it is important
to choose a classifier that would most accurately classify the action class given the
features, it is more important to obtain and feed in useful features into the classifier
and thereby simplify the classification problem itself.

96

Chapter 5

Current Status

Throughout this report, various action recognition and detection algorithms have
been surveyed. To conclude the report, the current trends as well as future direction
of action recognition and detection research will be explored. Some commonly ex-
plored methods will be recognized for their top performance on benchmark datasets
in section 5.1 followed by some outstanding challenges that remain in the field, which
will be addressed in section 5.2.

5.1 Current Trends

Action recognition and detection continues to be a popular research topic in com-
puter vision. In this section, we review some top performing action recognition and
detection algorithms on benchmark datasets. A quantitative summary of the state-
of-the-art action recognition and detection results on benchmark datasets can be
found in Table 5.1 and Table 5.3, respectively.

Before CNN-based algorithms took the field of action recognition and detection
by storm, iFV-encoded iDT features with HOG, HOF, and MBH descriptors us-
ing a linear SVM classifier (see iFV-encoded iDT + linear SVM in Table 5.1) were
top performing hand-crafted features achieving an accuracy of 57.2% and 85.9% on
HMDB51 and UCF101 datasets, respectively [188, 189]. Higher dimensional FV-
encodings were implemented to further improve iDT features (see high-dim. FV-
encoded iDT + linear SVM in Table 5.1), outperforming iFV-encoded features by
3.9% and 2.0% on the benchmark datasets [130]. These results suggest the power
of combining appearance and motion features, as well as the importance of tuning
encoding methods suited to serve the task of action recognition. Indeed, with such
features and encodings, even simple classifiers, such as linear SVMs, are able to
achieve outstanding results.

Due to its success in various classification tasks, there has been constant strive
for success using deep-learned convolutional features in the field of action recogni-
tion and detection. The two-stream approach [156], which decouples the appearance

97

5.1 Current Trends CHAPTER 5. CURRENT STATUS

and motion components of a video by taking image and motion inputs and fusing
them at the end via linear SVM (see two-stream CNN + linear SVM in Table 5.1),
is able to achieve a comparable result to the hand-crafted features (cf. high-dim.
FV-encoded iDT + linear SVM and two-stream CNN + linear SVM in Table 5.1).
Consequently, the two-stream approach became one of the most persistently pursued
paths amongst other CNN-based approaches [30, 41, 118, 156, 157, 195, 231]. The
hand-crafted and deep-learned features have demonstrated complementarity, achiev-
ing more accurate results than when either one is implemented independently (cf.
traj. pooled two-stream CNN and traj. pooled two-stream CNN + iDT in Table 5.1)
[41, 43, 194, 197, 229]. In fact, the top performing algorithm on both benchmark
datasets to date is achieved by combining the high-dimensional FV-encoded iDT
hand-crafted features with the two-streams of CNNs interacting through residual
connections (see two-stream CNN + ResNet + iDT in Table 5.1) [40].

As can be witnessed in Table 5.1, the results on the Sports-1M dataset are not
as widely reported as HMDB51 or UCF101. Aside from the fact that the Sports-
1M dataset was released two years prior to this report, there are many factors that
could be limiting algorithms from reporting results on the Sports-1M dataset: (i) the
training data is extremely large (multiple terabytes) [156], (ii) automatic collection
of the data does not permit the data from being free of label noise [41, 73] (e.g. a
supposed training video for the class women’s lacrosse with video ID EaOvsVdbhhE

does not contain a single instance of a person playing lacrosse, rather it is an inter-
view of a women’s lacrosse game), (iii) portions of the dataset have been removed by
YouTubers that uploaded the original videos, which can no longer be accessed since
the authors of the Sports-1M dataset provide URL links to each video [118], and
(iv) there is a very low inter-class variation in some cases (e.g. lacrosse vs. women’s
lacrosse).

The aggregate results reported in Table 5.1 reveal how algorithms perform in
general relative to others. Unfortunately, these quantitative data do not reveal any
details of the algorithm or dataset. Comparing how each algorithm performs on
individual actions, using a confusion matrix for example, can reveal how an al-
gorithm responds to particular actions and perhaps motions and/or appearances.
Comparing how algorithms perform with varying viewing conditions would reveal
their robustness to viewpoint, background clutter, occlusion, performance nuance,
slight variations in pose, and/or illumination. However, current benchmark datasets
lack systematic variation of such parameters, limiting algorithms from revealing the
relative impact of these parameters. As a result, unfortunately, many recent works
only report overall results limiting our ability to make any insightful observations
within each technique.

In the classical two-stream approach, the computation of optical flow for the
motion stream is the most time costly component of the algorithm [224]. Alterna-
tive to optical flow, motion vectors, which describes macro block movements from
one frame to the next, can be used to significantly lower the computational cost of

98

5.1 Current Trends CHAPTER 5. CURRENT STATUS

Method

Dataset
HMDB51 UCF101 Sports-1M

iFV-encoded iDT with linear SVM
[188, 189]

57.2% (10) 85.9% (11) -

high-dim. FV-encoded iDT with linear
SVM [130]

61.1% (8) 87.9% (10) -

2D CNN + slow-fusion [73] - 65.4% (13) 60.9% (2)

two-stream CNN + linear SVM [156] 59.4% (9) 88.0% (9) -

CNN + hier. pooling [43] 47.5% (11) 78.8% (12) -

CNN + hier. pooling + FV-encoded iDT
with non-linear SVM [43]

66.9% (3) 91.4% (6) -

two-stream CNN + key-volume mining
[231]

63.3% (6) 93.1% (3) -

traj. pooled two-stream CNN [194] 63.2% (7) 90.3% (7) -

traj. pooled two-stream CNN + iDT
[194]

65.9% (4) 91.5% (5) -

two-stream CNN + conv. fusion [41] 65.4% (5) 92.5% (4) -

two-stream CNN + conv. fusion + iDT
[41]

69.2% (2) 93.5% (2) -

two-stream CNN + ResNet + iDT [40] 70.3% (1) 94.6% (1) -

two-stream CNN + LSTM + conv. pool-
ing [118]

- 88.6% (8) 73.1% (1)

Table 5.1: State-of-the-Art Action Recognition Results. The HMDB51 and UCF101
datasets have three splits for training and testing. The average accuracy over the
three splits are reported. Numbers inside the parentheses indicates the rank in
decreasing order for each dataset (i.e. (k) indicates that the algorithm performs kth
best on the dataset).

99

5.1 Current Trends CHAPTER 5. CURRENT STATUS

the algorithm, from 14.3 fps to 390.7 fps, which is approximately 27 times faster
than the standard optical flow (see Table 5.2) [224]. However, since motion vectors
exhibit coarser structure, lacking fine and accurate motion information than optical
flow, slight degradation in performance does occur (from 88.0% to 86.4%) [224].
Intuitively, combining the most accurate approach with the most efficient approach
could achieve an ideal algorithm. Thus, it would be worth incorporating convolu-
tional fusion into the two-stream approach that uses motion vectors in its motion
stream to achieve an efficient yet accurate algorithm.

Method Accuracy FPS

iFV-encoded iDT + lin. SVM [189] 85.9% 2.1

two-stream CNN (RGB + opt. flow) + lin. SVM [156] 88.0% 14.3

two-stream CNN (RGB + motion vec.) + lin. SVM [224] 86.4% 390.7

Table 5.2: State-of-the-Art Action Recognition Accuracy and Efficiency Compari-
son. The performance and speed of the classical hand-crafted feature (iFV-encoded
iDT + lin. SVM), classical deep-learned convolutional two-stream feature (two-
stream CNN (RGB+opt. flow) + lin. SVM), and the two-stream approach with
optical flow replaced by motion vector (two-stream CNN (RGB+motion vec.) +
lin. SVM) is compared on the UCF101 dataset. The speed of the algorithms are
measured as frames per second (fps) on a single-core CPU (E5-2640-v3) and a K40
GPU. Results extracted from [224].

In general, action detection is a more complex task than action recognition.
Moreover, spatiotemporal localization is a more demanding task than temporal lo-
calization. As a result, there have been more papers on action recognition and
comparably less on detection. In recent years, however, a handful of research was
done on temporal localization reporting results on THUMOS ’14, MPII Cooking
Activities and MPII Cooking 2 Activities, as well as the ActivityNet datasets (see
Table 5.3). However, these algorithms reported results on a select few and not all
of these benchmark datasets. Therefore, it is a difficult task to compare and ana-
lyze the strengths and weaknesses of the algorithm relative to each other. Thus, we
remark on some common traits amongst these temporal action detection algorithms.

As in the case of action recognition tasks, CNN-based algorithms also remain
a popular choice in temporal action detection [104, 118, 120, 155, 157]. Recent
research localizes actions temporally by either: (i) sliding a temporal window to
determine the action proposal and class [51, 120, 155], or (ii) using LSTM-RNNs
[104, 120, 212]. Many top performing temporal action detection algorithms rely on
CNNs to represent features and LSTM-RNNs to model temporal transition of the

100

5.2 Open Problems CHAPTER 5. CURRENT STATUS

actions, which allow for temporal detection [104, 155, 212, 220]. However, LSTM-
RNNs are not limited to localize actions or objects of interest temporally. They can
be used to sequentially refine the detected result, which is particularly useful for
detecting fine-grained actions as in the MPII Cooking Activities dataset [120].

5.2 Open Problems

While there has been significant progress in the field of action recognition and de-
tection, computer vision-based algorithms are still far from identifying actions as
well as humans. Provided that the video contains enough information for humans
to visualize the actions of interest, we have the ability to classify actions irrespective
of variations in viewpoint, background clutter, occlusion, performance nuance, con-
siderable variations in pose, and illumination. Computer vision-based algorithms,
on the other hand, are not able to overcome all of these obstacles yet. It is then
appropriate to question where and why these systems fall short. In this section, we
address some open problems that remain in the field to direct ongoing research that
would allow computer vision-based algorithms to reach the capabilities of humans.

Algorithms that are able to achieve accuracies of over 85% on benchmark datasets
collected from the “wild”, like UCF101, may suggest that they have solved the in-
variance problems (see Table 5.1). However, these same algorithms achieve just over
65% on HMDB51, performing not as impressively on a similarly wild dataset with
more variation in viewpoints. This result suggests that the proposed algorithms are
not robust to viewpoints and that viewpoint invariance remains a crucial problem
to be addressed.

The current widely used deep-learned convolutional features have demonstrated
state-of-the-art results on both action recognition and detection tasks. However,
there lacks a theoretical understanding of how and why these algorithms are so suc-
cessful. A scientific understanding is in great need of these algorithms such that it
would help researchers develop algorithms that are even more accurate and efficient.

Empirical results suggest that with copious amounts of data, CNN-based algo-
rithms are able to learn similar features between different actors performing the
same action (i.e. performance nuance) [41]. However, many real-world problems
(e.g. surveillance scenarios) are not able to provide such massive amounts of data
nor time for training. There is a need for algorithms to work in real-time respectably
with small amounts of data that would progressively improve its confidence as more
data is learned, most desirably in an unsupervised fashion.

Currently, many algorithms report overall results on benchmark datasets. Be-
yond aggregate results, we should be able to distinguish the specific categories in
which algorithms perform well. This may be achieved with a systematic dataset
with a hierarchical categorization. Although the ActivityNet dataset is organized

101

5.2
O
p
en

P
rob

lem
s

C
H
A
P
T
E
R

5.
C
U
R
R
E
N
T

S
T
A
T
U
S

Method

Dataset
THUMOS’ 14 MPII Cooking [141] MPII Cooking 2 [142] ActivityNet

CNN features + LSTM-RNN [212] 17.1% - - 36.7

3D CNN for proposal, classification, localization networks [155] 47.7% - - -

detection score computed by LSTM on CNN-based features of the frame [104] - - - 54.0 mAP

two-stream CNN (still frame + pixel trajectories) [157] - - 41.2 mAP -

LSTM-RNN + FV-encoded iDT [120] - 58.9 mAP - -

iFV-encoded iDT + LSTM-RNN [220] - 36.3 precision, 59.7 recall - -

Table 5.3: State-of-the-Art Temporal Action Detection Results.

102

5.2 Open Problems CHAPTER 5. CURRENT STATUS

in a hierarchical fashion (see Table 2.4), there are still commonalities between inter-
category classes (e.g. dancing in the socializing category vs. doing aerobics in the
exercise category or smoking in the leisure activities category vs. drinking in the
eating and drinking activities category). A dataset that is more distinct between the
categories could provide a principled way of tuning parameters that would serve par-
ticularly well to its application domain (e.g. surveillance, home monitoring, video
indexing, and sports analysis). Furthermore, the videos within each class should
vary viewing parameters systematically to specifically indicate where the proposed
algorithms are failing. Even with more systematically collected datasets, however,
deeper understanding of how and why algorithms perform the way they do will only
occur once research efforts are refrained from simply chasing after performance num-
bers and focused on analyzing internal algorithm operations and representations.

Another matter worth addressing is that there are comparably less publications
in action detection in contrast to action recognition. Correspondingly, the state-
of-the-art quantitative results are significantly worse with 58.9 mAP [120] on the
MPII Cooking Dataset for temporal action detection, whereas its counterpart, ac-
tion recognition, is able to routinely achieve an accuracy of over 65% [41, 43, 193]
and 85% [41, 43, 118, 130, 156, 197, 224, 231] on much more complicated datasets,
HMDB51 and UCF101, respectively. Temporal and/or spatiotemporal localization
of actions can be useful in alerting caregivers or security personnel of abnormal or
suspicious activities in home or security settings. It is worth directing our attention
to detecting actions or regions that are likely to contain actions than to remain
focused on the task of action categorization in well trimmed videos. In this light,
we point out that datasets suited for action detection tasks are very limited. Thus,
many algorithms that do try to tackle the detection problem rely on THUMOS, MSR
Action Dataset I/II, CMU Crowded Videos, or MPII Cooking Activities Datasets.
A systematic large-scale benchmark action detection dataset that is not only catered
towards approaches that require a large set of videos (e.g. CNN-based algorithms),
but is more resemblant of real-world scenarios could help improve the current status
of action detection.

Significant research has been done in the field of action recognition and detection.
Perhaps its potential fields of application in the real-world has attracted much at-
tention. However, current algorithms still lack robustness to variations in real-world
conditions. A better theoretical understanding of well-performing algorithms, and
algorithms that can reliably detect actions efficiently and accurately with less train-
ing data are some of the most urgent steps to take from hereon. This enhancement
in technology could better assist and benefit many people in the real-world.

103

Appendix A

Related Fields

There are many fields that are closely related to action recognition and detection.
Their algorithms can either (i) help improve current recognition and detection algo-
rithms, (ii) benefit from the results of existing recognition or detection algorithms,
or (iii) use an approach similar to those in action recognition and detection algo-
rithms to serve its own task. Here, each type of these related fields will be briefed.

Localization of actions in long untrimmed videos can be done efficiently by ob-
taining (or removing) snippets that are likely (or unlikely) to contain actions of
interest. These candidate regions can be temporal [52, 104, 155, 197] or spatiotem-
poral snippets [180, 46, 64, 169, 216, 231] and are referred to as action proposals.
Action proposals do not identify the class of an action but localize regions that are
likely to contain an action (i.e. regions with high actionness scores [23]). Conversely,
regions that are unlikely to contain actions of interest, referred to as non-action shots
[197], can provide similarly useful information. Various approaches have been taken
to obtain action proposals, such as supervoxel-based approaches [64, 126, 168, 180],
combination of static and kinematic cues [46], combination of human detectors and
dense trajectory features [216], as well as lattice conditional random fields [23]. Once
an action proposal has been found (or non-action shots have been removed), typical
action recognition algorithms (e.g. FV-encoded iDT features with SVM classifier
[52, 180, 64, 216] or two-stream CNN [46]) can be used to identify an action in the
proposals [52, 169]. Action proposals (or non-action shots) prevent going through
an exhaustive search space and helps detect temporal or spatiotemporal locations
of actions.

Detection of an unusual behaviour, or more specifically anomalous action, is an-
other interesting related task to action recognition and detection. Some examples
of anomalous behaviours are: (i) motion in an area where no motion is expected
to occur (e.g. secured storage facility), and (ii) motion of an object moving in an
unexpected direction (e.g. car travelling in the “wrong way” on a one-way road,
a person falling down on a sidewalk). Anomalous behaviours can be detected by
matching the observation to a database of normal videos or learning expected pat-
terns from such a database, then flagging regions that deviate from learned patterns

104

APPENDIX A. RELATED FIELDS

[7, 116, 167, 221].

Forecasting the future rather than interpreting the present actions, or action pre-
diction, is another closely related field to action recognition. Like recognition and
detection algorithms, HOG, HOF, and MBH [85], cuboids [146], or CNNs [184] can
be used to represent features, and the action class to occur can be specified using
the nearest neighbour approach [184], or SVM [53, 85, 184]. The action prediction
model can progressively transition into an action recognition model. That is, as
more of the action is observed, the entire action would be seen. Progressive transi-
tion from action prediction to recognition can be indicated by a gradual increase in
confidence score of the action class [104, 146]. This tack could provide very useful
information in the real-world. For example, in autonomous navigation, prediction
of when an accident could occur would divert a vehicle from causing any (further)
damage, while recognition of an accident would alert emergency medical technicians
(e.g. paramedics). In geriatric care, a robot that detects an elderly patient trying
to stand up can help them stand without falling, while recognition of a fallen senior
would alert the caregiver.

With an emergence of first-person point-of-view cameras (e.g. GoPro, Google
Glass), recognition of actions from an egocentric view has recently been an emerging
field [102, 158, 229]. Egocentric action recognition has many interesting applications
(e.g. extreme sports, law enforcement). Some overlap in recognition techniques
can be found between first- and third-person recognition algorithms, such as CNN-
based model [102, 158, 229]. Different from third-person action recognition models,
first-person models place emphasis on hand and object motions. Furthermore, the
benchmark datasets used in first- and third-person action recognition algorithms
differ greatly. In this report, the main focus is placed on third-person action recog-
nition.

Figure A.1: Egocentric Action Recognition. Select frames of egocentric actions
(left-to-right): pour, take, put, stir, and open from first-person action recognition
datasets (top-to-bottom): GTEA [37], Kitchen [165], and ADL [132]. Redrawn from
[158].

105

APPENDIX A. RELATED FIELDS

Activity recognition [56] is another closely related active field of research. Activity
recognition in itself is a vast field as it can be broken down into single person activity,
group activity, and team activity as in sports [59]. As actions are basic components
that piece together to yield an activity, collectively recognizing primitive actions can
provide strong indication of the activity that is occurring in a video. Thus, action
recognition and detection remains a fundamental problem for its related recognition
and classification tasks.

106

References

[1] M.A.R. Ahad, J. Tan, H. Kim, and S. Ishikawa. Action Dataset - A Survey.
In SICE Annual Conference, pages 1650–1655, 2011.

[2] M. Ahmad and S.W. Lee. Human Action Recognition using Shape and CLG-
motion flow from Multi-view Image Sequences. The Journal of Pattern Recog-
nition Society, 41(7):2237–2252, 2008.

[3] S. Ali and M. Shah. Human Action Recognition in Videos Using Kinematic
Features and Multiple Instance Learning. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (PAMI), 32(2):288–303, 2010.

[4] R. Arandjelovic and A. Zisserman. All about VLAD. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1578–1585, 2013.

[5] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt. Sequential
Deep Learning for Human Action Recognition. In Human Behavior Under-
standing, pages 29–39, 2011.

[6] N. Ballas, Y. Yang, Z.Z. Lan, B. Delezoide, F. Preteux, and A. Hauptmann.
Space-Time Robust Video Representation for Action Recognition. In IEEE In-
ternational Conference on Computer Vision (ICCV), pages 2704–2711, 2013.

[7] A. Basharat, A. Gritai, and M. Shah. Learning Object Motion Patterns for
Anomaly Detection and Improved Object Detection. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1–8, 2008.

[8] D. Batra, T. Chen, and R. Sukthankar. Space-Time Shapelets for Action
Recognition. In IEEE Workshop on Motion and Video Computing (WMVC),
pages 1–6, 2008.

[9] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded Up Robust Features.
In European Conference on Computer Vision (ECCV), pages 404–417, 2006.

[10] I. Biederman. Human Image Understanding: Recent Research and a Theory.
Computer Vision, Graphics, and Image Processing, 32(1):29–73, 1985.

[11] H. Bilen, B. Fernando, E. Gavves, A. Vedaldi, and S. Gould. Dynamic Image
Networks for Action Recognition. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

107

REFERENCES REFERENCES

[12] J.A. Bilmes. Dynamic Bayesian Multinets. In Uncertainty in Artificial Intel-
ligence, 2000.

[13] C.M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[14] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri. Actions as
Space-Time Shapes. In IEEE International Conference on Computer Vision
(ICCV), pages 1395–1402, 2005.

[15] D.M. Blei, A.Y. Ng, and M.I. Jordan. Latent Dirichlet Allocation. Journal of
Machine Learning Research (JMLR), 3:993–1022, 2003.

[16] A. Bobick and J. Davis. The Recognition of Human Movement Using Temporal
Templates. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 23(3):257–267, 2001.

[17] R. Bodor, B. Jackson, and N. Papanikolopoulos. Vision-based Human Track-
ing and Activity Recognition. In Mediterranean Conference on Control and
Automation, 2003.

[18] Y.L. Boureau, J. Ponce, and Y. LeCun. A Theoretical Analysis of Feature
Pooling in Visual Recognition. In International Conference on Machine Learn-
ing (ICML), 2010.

[19] J.C. Caicedo and F.A. Gonzalez. Online Matrix Factorization for Multimodal
Image Retrieval. In Progress in Pattern Recognition, Image Analysis, Com-
puter Vision, and Applications, pages 340–347, 2012.

[20] L. Cao, Z. Liu, and T.S. Huang. Cross-dataset Action Detection. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 1998–
2005, 2010.

[21] J.M. Chalet, E.J. Carmon, and A. Fernandez-Caballero. A Survey of Video
Datasets for Human Action and Activity Recognition. Computer Vision and
Image Understanding (CVIU), 117(6):633–659, 2013.

[22] K. Chatfield, V. Lemtexpitsky, A. Vedaldi, and A. Zisserman. The Devil is in
the Details: An Evaluation of Recent Feature Encoding Methods. In British
Machine Vision Conference (BMVC), pages 76.1–76.12, 2011.

[23] W. Chen, C. Xiong, R. Xu, and J.J. Corso. Actionness Ranking with Lattice
Conditional Ordinal Random Fields. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 748–755, 2014.

[24] O. Chomat and J. Crowley. Probabilistic Recognition of Activity Using Local
Appearance. In IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 1999.

108

REFERENCES REFERENCES

[25] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human De-
tection. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), volume 1, pages 886–893, 2005.

[26] N. Dalal, B. Triggs, and C. Schmid. Human Detection Using Oriented His-
tograms of Flow and Appearance. In European Conference on Computer Vi-
sion (ECCV), volume 3952, pages 428–441, 2006.

[27] J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, and L. Fei-Fei. ImageNet: A
Large-scale Hierarchical Image Database. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2009.

[28] K. Derpanis, M. Sizintsev, K.J. Cannons, and R.P. Wildes. Action Spot-
ting and Recognition Based on a Spatiotemporal Orientation Analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI), 35(3):1–
8, 2013.

[29] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior Recognition via
Sparse Spatio-Temporal Features. In Joint IEEE International Workshop on
Visual Surveillance and Performance Evaluation of Tracking and Surveillance,
pages 65–72, 2005.

[30] J. Donahue, L.A. Hendricks, S. Guadarrama, and M. Rohrbach. Long-term
Recurrent Convolutional Networks for Visual Recognition and Description.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2625–2634, 2015.

[31] G. Dougherty. Pattern Recognition and Classification. Springer, 2013.

[32] Y. Du, F. Chen, and W. Xu. Human Interaction Representation and Recog-
nition Through Motion Decomposition. IEEE Signal Processing Letters,
14(12):952–955, 2007.

[33] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. John Wiley &
Sons, 2001.

[34] A.A. Efros, A.C. Berg, G. Mori, and J. Malik. Recognizing Action at a Dis-
tance. In IEEE International Conference on Computer Vision (ICCV), pages
726 – 733, October 2003.

[35] C. Fanti, L. Zelnik Manor, and P. Perona. Hybrid Models for Human Motion
Recognition. In IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 1166–1173, 2005.

[36] A. Fathi and G. Mori. Action Recognition by Learning Mid-Level Motion
Features. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2008.

109

REFERENCES REFERENCES

[37] A. Fathi, X. Ren, and J.M. Rehg. Learning to Recognize Objects in Egocentric
Activities. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3281–3288, 2011.

[38] C. Feichtenhofer, A. Pinz, and R.P. Wildes. Dynamically Encoded Actions
based on Spacetime Saliency. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2755–2764, 2015.

[39] C. Feichtenhofer, A. Pinz, and R.P. Wildes. Dynamic Scene Recognition
with Complementary Spatiotemporal Features. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence (PAMI), pages 1–14, 2016.

[40] C. Feichtenhofer, A. Pinz, and R.P. Wildes. Spatiotemporal Residual Networks
for Video Action Recognition. In Advances in Neural Information Processing
Systems (NIPS), 2016.

[41] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional Two-Stream Net-
work Fusion for Video Action Recognition. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1933–1941, 2016.

[42] X. Feng and P. Perona. Human Action Recognition by Sequence of Movelet
Codewords. In First International Symposium on 3D Data Processing Visu-
alization and Transmission, pages 717–721, 2002.

[43] B. Fernando, P. Anderson, M. Hutter, and S. Gould. Discriminative Hierarchi-
cal Rank Pooling for Activity Recognition. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1924–1932, 2016.

[44] K. Fukushima. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition. Biological Cybernetics, 36(4):193–202, 1980.

[45] K. Gimpel. Modeling Topics. Technical report, Carnegie Mellon University,
2008.

[46] G. Gkioxari and J. Malik. Finding Action Tubes. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 759–768, 2015.

[47] M.A. Goodale and A.D. Milner. Separate Visual Pathways for Perception and
Action. Trends in Neurosciences, 15(1):20–25, 1992.

[48] A. Gorban, H. Idrees, Y.G. Jiang, A. Roshan Zamir, I. Laptev, M. Shah,
and R. Sukthankar. THUMOS Challenge: Action Recognition with a Large
Number of Classes. http://www.thumos.info/, 2015.

[49] J.M. Gryn, R.P. Wildes, and J.K. Tsotsos. Detecting Motion Patterns via
Direction Maps with Application to Surveillance. Computer Vision and Image
Understanding (CVIU), 113(2):291–307, 2009.

[50] M. Hahn, L. Kruger, and C. Wohler. 3D Action Recognition and Long-Term
Prediction of Human Motion. In Computer Vision Systems, pages 23–32, 2008.

110

http://www.thumos.info/

REFERENCES REFERENCES

[51] F.C. Heilbron, V. Escorcia, B. Ghanem, and J.C. Niebles. ActivityNet: A
Large-Scale Video Benchmark for Human Activity Understanding. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 961–
970, 2015.

[52] F.C. Heilbron, J.C. Niebles, and B. Ghanem. Fast Temporal Activity Pro-
posals for Efficient Detection of Human Actions in Untrimmed Videos. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1914–1923, 2016.

[53] M. Hoai and F. de la Torre. Max-Margin Early Event Detectors. International
Journal of Computer Vision (IJCV), 107(2):191–202, 2014.

[54] T. Hofmann. Probabilistic Latent Semantic Indexing. In Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 50–57, 1999.

[55] M.K. Hu. Visual Pattern Recognition by Moment Invariants. IRE Transac-
tions on Information Theory, 8(2):179–187, 1962.

[56] W. Hu, T. Tan, L. Wang, and S. Maybank. A Survey on Visual Surveillance of
Object Motion and Behaviors. In IEEE Transactions on Systems, Man, and
Cybernetics, pages 334–352, 2006.

[57] G.B. Huang, H. Zhou, X. Ding, and R. Zhang. Extreme Learning Machine for
Regression and Multiclass Classification. In IEEE Transactions on Systems,
Man, and Cybernetics, volume 42, pages 513–529, 2012.

[58] Y. Huang, K. Huang, Y. Yu, and T. Tan. Salient Coding for Image Classi-
fication. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1753–1760, 2011.

[59] M.S. Ibrahim, S. Muralidharan, Z. Deng, A. Vahdat, and G. Mori. A Hierar-
chical Deep Temporal Model for Group Activity Recognition. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 1971–1980,
2016.

[60] N. Ikizler and P. Duygulu. Histogram of oriented rectangles: A new pose de-
scriptor for human action recognition. Image Vision Computing, 27(10):1515–
1526, 2009.

[61] N. Ikizler and D.A. Forsyth. Searching for Complex Human Activities with
No Visual Examples. International Journal of Computer Vision (IJCV),
80(3):337–357, 2008.

[62] T.S. Jaakkola and D. Haussler. Exploiting Generative Models in Discrim-
inative Classifiers. In Advances in Neural Information Processing Systems
(NIPS), pages 487–493, 1998.

111

REFERENCES REFERENCES

[63] M. Jain, H. Jegou, and P. Bouthemy. Better Exploiting Motion for Better
Action Recognition. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2555–2562, 2013.

[64] M. Jain, J. van Gemert, H. Jegou, P. Bouthemy, and C.G.M. Snoek. Action
Localization with Tubelets from Motion. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 740–747, 2014.

[65] H. Jegou, M. Douze, C. Schmid, and P. Perez. Aggregating Local Descriptors
into a Compact Image Representation. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3304–3311, 2010.

[66] H. Jhuang, J. Gall, S. Zuffi, C. Schmid, and M.J. Black. Towards Under-
standing Action Recognition. In IEEE International Conference on Computer
Vision (ICCV), pages 3192–3199, 2013.

[67] H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A Biologically Inspired System for
Action Recognition. In IEEE International Conference on Computer Vision
(ICCV), 2007.

[68] S. Ji, W. Xu, M. Yang, and K. Yu. 3D Convolutional Neural Networks for
Human Action Recognition. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (PAMI), 35(1):221–231, 2013.

[69] Y.G. Jiang, Q. Dai, X. Xue, W. Liu, and C.W. Ngo. Trajectory-Based Model-
ing of Human Actions with Motion Reference Points. In European Conference
on Computer Vision (ECCV), volume 7576, pages 425–438, 2012.

[70] Y.G. Jiang, J. Liu, A. Roshan Zamir, I. Laptev, M. Piccardi, M. Shah, and
R. Sukthankar. THUMOS Challenge: Action Recognition with a Large Num-
ber of Classes. http://crcv.ucf.edu/ICCV13-Action-Workshop/, 2013.

[71] Y.G. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev, M. Shah, and
R. Sukthankar. THUMOS Challenge: Action Recognition with a Large Num-
ber of Classes. http://crcv.ucf.edu/THUMOS14/, 2014.

[72] S.X. Ju, M.J. Black, and Y. Yacoob. Cardboard People: A Parameterized
Model of Articulated Image Motion. In Proceedings of the Second International
Conference on Automatic Face and Gesture Recognition, pages 38–44, 1996.

[73] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei.
Large-scale Video Classification with Convolutional Neural Networks. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1725
– 1732, 2014.

[74] S.R. Ke, H.L.U. Thuc, Y.J. Lee, J.N Hwang, J.H. Yoo, and K.H. Choi. A
Review on Video-Based Human Activity Recognition. Activity Detection and
Novel Sensing Technologies, 2(2):88–131, 2013.

112

http://crcv.ucf.edu/ICCV13-Action-Workshop/
http://crcv.ucf.edu/THUMOS14/

REFERENCES REFERENCES

[75] Y. Ke, R. Sukthankar, and M. Hebert. Efficient Visual Event Detection using
Volumetric Features. In IEEE International Conference on Computer Vision
(ICCV), pages 166–173, 2005.

[76] Y. Ke, R. Sukthankar, and M. Hebert. Event Detection in Crowded Videos.
In IEEE International Conference on Computer Vision (ICCV), pages 1–8,
2007.

[77] T. Kim and R. Cupola. Canonical Correlation Analysis of Video Volume Ten-
sors for Action Categorization and Detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 31:1415–1428, 2009.

[78] A. Klaser, M. Marszalek, and C. Schmid. A Spatio-Temporal Descriptor Based
on 3D-Gradients. In British Machine Vision Conference (BMVC), 2008.

[79] O. Kliper-Gross, Y. Gurovich, T. Hassner, and L. Wolf. Motion Interchange
Patterns for Action Recognition in Unconstrained Videos. In European Con-
ference on Computer Vision (ECCV), 2012.

[80] J.J. Koenderink and A.J. Van Doom. The Structure of Locally Orderless
Images. International Journal of Computer Vision (IJCV), 31(2):159–168,
1999.

[81] B. Kolman and D.R. Hill. Elementary Linear Algebra with Applications. Pear-
son Education Inc., ninth edition edition, 2008.

[82] A. Kovashka and K. Grauman. Learning a Hierarchy of Discriminative Space-
Time Neighborhood Features for Human Action Recognition. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 2046–2053,
2010.

[83] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: A
Large Video Database for Human Motion Recognition. In IEEE International
Conference on Computer Vision (ICCV), pages 2556–2563, 2011.

[84] J. Lafferty, A. McCallum, and F. Pereira. Conditional Random Fields: Prob-
abilistic Models for Segmenting and Labeling Sequence Data. In International
Conference on Machine Learning (ICML), pages 282–289, 2001.

[85] T. Lan, T.C. Chen, and S. Savarese. A Hierarchical Representation for Future
Action Prediction. In European Conference on Computer Vision (ECCV),
pages 689–704, 2014.

[86] T. Lan, Y. Wang, and G. Mori. Discriminative Figure-centric Models for Joint
Action Localization and Recognition. In IEEE International Conference on
Computer Vision (ICCV), pages 2003–2010, 2011.

[87] I. Laptev. On Space-Time Interest Points. International Journal of Computer
Vision (IJCV), 64(2):107–123, 2005.

113

REFERENCES REFERENCES

[88] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning Realistic
Human Actions from Movies. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2008.

[89] I. Laptev and P. Perez. Retrieving Actions in Movies. In IEEE International
Conference on Computer Vision (ICCV), pages 1–8, 2007.

[90] B. Laxton, L. Lim, and D. Kriegman. Leveraging Temporal, Contextual and
Ordering Constraints for Recognizing Complex Activities in Video. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–8,
2007.

[91] S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyra-
mid Matching for Recognizing Natural Scene Categories. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2169–2178, 2006.

[92] Q.V. Le, W.Y. Zou, S.Y. Yeung, and A.Y. Ng. Learning Hierarchical Invariant
Spatio-temporal Features for Action Recognition with Independent Subspace
Analysis. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3361–3368, 2011.

[93] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based Learning
Applied to Document Recognition. In Proceedings of the IEEE, volume 86,
1998.

[94] Z. Lin, Z. Jiang, and L. Davis. Recognizing Actions by Shape-Motion Proto-
type Trees. In IEEE International Conference on Computer Vision (ICCV),
pages 444–451, 2009.

[95] H. Liu, R. Feris, and M.T. Sun. Visual Analysis of Humans, chapter 20
- Benchmarking Datasets for Human Activity Recognition, pages 411–427.
Springer, 2011.

[96] J. Liu, J. Luo, and M. Shah. Recognizing Realistic Actions from Videos “in
the wild”. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2009.

[97] L. Liu, L. Wang, and X. Liu. In Defense of Soft-Assignment Coding. In
IEEE International Conference on Computer Vision (ICCV), pages 2486–
2493, 2011.

[98] D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. Inter-
national Journal of Computer Vision (IJCV), 60(2):91–110, 2004.

[99] W.L. Lu and J.J. Little. Simultaneous Tracking and Action Recognition using
the PCA-HOG Descriptor. In Canadian Conference on Computer and Robot
Vision (CRV), pages 1–6, 2006.

114

REFERENCES REFERENCES

[100] Y. Luo, T.D. Wu, and J.N. Hwang. Object-based Analysis and Interpretation
of Human Motion in Sports Video Sequences by Dynamic Bayesian Networks.
Computer Vision and Image Understanding (CVIU), 92(2-3):196–216, 2003.

[101] F. Lv and R. Nevatia. Single View Human Action Recognition using Key
Pose Matching and Viterbi Path Searching. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1–8, 2007.

[102] M. Ma, H. Fan, and K.M. Kitani. Going Deeper into First-Person Activity
Recognition. In IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 1894–1903, 2016.

[103] S. Ma, S. Sclaroff, J. Zhang, and N. Ikizler-cinbis. Action Recognition and
Localization by Hierarchical Space-Time Segments. In IEEE International
Conference on Computer Vision (ICCV), 2013.

[104] S. Ma, L. Sigal, and S. Sclaroff. Learning Activity Progression in LSTMs for
Activity Detection and Early Detection. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1942–1950, 2016.

[105] B. Mahasseni and S. Todorovic. Regularizing Long Short Term Memory with
3D Human-Skeleton Sequences for Action Recognition. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 3054–3062, 2016.

[106] M. Marszalek, I. Laptev, and C. Schmid. Hollywood2: Human Actions and
Scenes Dataset. http://www.di.ens.fr/~laptev/actions/hollywood2/.

[107] M. Marszalek, I. Laptev, and C. Schmid. Actions in Context. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 2929–2936,
2009.

[108] T. Masada, S. Kiyasu, and S. Miyahara. Comparing LDA with pLSI as a
Dimensionality Reduction Method in Document Clustering. In Conference on
Large-Scale Knowledge Resources, pages 13–26, 2008.

[109] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust Wide-Baseline Stereo
from Maximally Stable Extremal Regions. In British Machine Vision Confer-
ence (BMVC), pages 384–396, 2004.

[110] M.A. Mendoza and N.P. de la Blanca. Applying Space State Models in Hu-
man Action Recognition: A Comparative Study. In Articulated Motion and
Deformable Objects (AMDO), pages 53–62, 2008.

[111] K. Mikolajczyk and C. Schmid. Indexing based on Scale Invariant Interest
Points. In IEEE International Conference on Computer Vision (ICCV), 2001.

[112] K. Mikolajczyk and C. Schmid. Scale and Affine Invariant Interest Point
Detectors. International Journal of Computer Vision (IJCV), 60(1):63–86,
2004.

115

http://www.di.ens.fr/~laptev/actions/hollywood2/

REFERENCES REFERENCES

[113] K. Mikolajczyk and C. Schmid. A Performance Evaluation of Local De-
scriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 27(10):1615–1630, 2005.

[114] K. Mikolajczyk and H. Uemura. Action Recognition with Motion-Appearance
Vocabulary Forest. In IEEE Computer Vision and Pattern Recognition
(CVPR), 2008.

[115] C. Moler. The World’s Largest Matrix Computation. Technical articles and
newsletters, MathWorks, 2002.

[116] R.J. Morris and D.C. Hogg. Statistical Models of Object Interaction. Inter-
national Journal of Computer Vision (IJCV), 37(2):209–215, 2000.

[117] K. Murphy. Dynamic Bayesian Networks: Representation, Inference and
Learning. PhD thesis, University of California, Berkeley, 2002.

[118] J.Y.H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and
G. Toderici. Beyond Short Snippets: Deep Networks for Video Classification.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 4694–4702, 2015.

[119] D.H. Nga and K. Yanai. A Spatio-Temporal Feature based on Triangula-
tion of Dense SURF. In IEEE International Conference on Computer Vision
Workshops (ICCVW), pages 420–427, 2013.

[120] B. Ni, X. Yang, and S. Gao. Progressively Parsing Interactional Objects for
Fine Grained Action Detection. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1020–1028, 2016.

[121] J.C. Niebles, C.W. Chen, and L. Fei-Fei. Modeling Temporal Structure of
Decomposable Motion Segments for Activity Classification. In European Con-
ference on Computer Vision (ECCV), volume 2, pages 392–405, 2010.

[122] J.C. Niebles, H. Wang, and L. Fei-Fei. Unsupervised Learning of Human
Action Categories Using Spatial-Temporal Words. International Journal of
Computer Vision (IJCV), 79:299–318, 2008.

[123] H. Ning, T. Han, D. Walther, M. Liu, and T. Huang. Hierarchical Space-Time
Model Enabling Efficient Search for Human Actions. In IEEE Transactions in
Circuits and Systems for Video Technology, volume 19, pages 808–820, 2006.

[124] T. Ogata, W. Christmas, J. Kittler, and S. Ishikawa. Improving Human Ac-
tivity Detection by Combining Multi-dimensional Motion Descriptors with
Boosting. In International Conference on Pattern Recognition (ICPR), vol-
ume 1, pages 295–298, 2006.

[125] A. Oikonomopoulos, I. Patras, and M. Pantic. Spatiotemporal Salient Points
for Visual Recognition of Human Actions. In IEEE Transactions on Systems,
Man, and Cybernetics - Part B: Cybernetics, volume 36, pages 710–719, 2006.

116

REFERENCES REFERENCES

[126] D. Oneata, J. Revaud, J. Verbeek, and C. Schmid. Spatio-temporal Object
Detection Proposals. In European Conference on Computer Vision (ECCV),
pages 737–752, 2014.

[127] D. Oneata, J. Verbeek, and C. Schmid. Action and Event Recognition with
Fisher Vectors on a Compact Feature Set. In IEEE International Conference
on Computer Vision (ICCV), pages 1817–1824, 2013.

[128] D. Oneata, J. Verbeek, and C. Schmid. The LEAR submission at THUMOS
2014. In THUMOS Challenge: Action Recognition with a Large Number of
Classes, 2014.

[129] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation
Ranking: Bringing Order to the Web. Technical Report 422, Stanford Uni-
versity, 1999.

[130] X. Peng, L. Wang, X. Wang, and Y. Qiao. Bag of Visual Words and Fusion
Methods for Action Recognition: Comprehensive Study and Good Practice.
Computer Vision and Image Understanding (CVIU), 150:109–125, 2016.

[131] F. Perronnin, J. Sanchez, and Thomas Mensink. Improving the Fisher Kernel
for Large-Scale Image Classification. In European Conference on Computer
Vision (ECCV), pages 143–156, 2010.

[132] H. Pirsiavash and D. Ramanan. Detecting Activities of Daily Living in First-
person Camera Views. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2847–2854, 2012.

[133] R. Poppe. A Survey on Vision-based Human Action Recognition. Image and
Vision Computing, 28(6):976–990, 2010.

[134] J. Puzicha, T. Hofmann, and J.M. Buhmann. Non-parametric Similarity Mea-
sures for Unsupervised Texture Segmentation and Image Retrieval. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 267–
272, 1997.

[135] D. Ramanan and D.A. Forsyth. Automatic Annotation of Everyday Move-
ments. In Advances in Neural Information Processing Systems (NIPS), 2003.

[136] C. Rao, A. Yilmaz, and M. Shah. View-Invariant Representation and Recogni-
tion of Actions. International Journal of Computer Vision (IJCV), 50(2):203–
226, 2002.

[137] K. Rapantzikos, Y. Avrithis, and S. Kollias. Dense Saliency-Based Spatiotem-
poral Feature Points for Action Recognition. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2009.

[138] K.K. Reddy and M. Shah. UCF50 - Action Recognition Data Set. http:

//crcv.ucf.edu/data/UCF50.php.

117

http://crcv.ucf.edu/data/UCF50.php
http://crcv.ucf.edu/data/UCF50.php

REFERENCES REFERENCES

[139] K.K. Reddy and M. Shah. Recognizing 50 Human Action Categories of Web
Videos. Machine Vision and Applications Journal, 24(5):971–981, 2012.

[140] M. Rodriguez, J. Ahmed, and M. Shah. Action MACH: A Spatio-temporal
Maximum Average Correlation Height Filter for Action Recognition. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2008.

[141] M. Rohrbach, S. Amin, M. Andriluka, and B. Schiele. A Database for Fine
Grained Activity Detection of Cooking Activities. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1194–1201, 2012.

[142] M. Rohrbach, A. Rohrbach, M. Regneri, S. Amin, M. Andriluka, M. Pinkal,
and B. Schiele. Recognizing Fine-Grained and Composite Activities Using
Hand-Centric Features and Script Data. International Journal of Computer
Vision (IJCV), 119(3):346–373, 2015.

[143] Y. Rubner, C. Tomasi, and L.J. Guibas. A Metric for Distributions with Appli-
cations to Image Databases. In IEEE International Conference on Computer
Vision (ICCV), pages 59–66, 1998.

[144] Y. Rubner, C. Tomasi, and L.J. Guibas. The Earth Mover’s Distance as a
Metric for Image Retrieval. International Journal of Computer Vision (IJCV),
40(2):99–121, 2000.

[145] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, third edition edition, 2010.

[146] M.S. Ryoo. Human Activity Prediction: Early Recognition of Ongoing Activ-
ities from Streaming Videos. In IEEE International Conference on Computer
Vision (ICCV), pages 1036–1043, 2011.

[147] K. Schindler and L. van Gool. Action Snippets: How many frames does
human action recognition require? In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1–8, 2008.

[148] C. Schuldt, I. Laptev, and B. Caputo. Recognizing Human Action: A Lo-
cal SVM Approach. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 32–36, 2004.

[149] P. Scovanner, S. Ali, and M. Shah. A 3-Dimensional SIFT Descriptor and Its
Applications to Action Recognition. In Proceedings of the 15th ACM Interna-
tional Conference on Multimedia, pages 357–360, 2007.

[150] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio. Robust Object
Recognition with Cortex-like Mechanisms. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 29(3):411–426, 2007.

[151] A.H. Shabani, D.A. Clausi, and J.S. Zelek. Salient Feature Detectors for
Human Action Recognition. In Ninth Conference on Computer and Robot
Vision (CRV), pages 468–475, 2012.

118

REFERENCES REFERENCES

[152] E. Shechtman and M. Irani. Space-Time Behavior-Based Correlation - OR -
How to Tell If Two Underlying Motion Fields are Similar without Computing
Them? IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 29:2045–2056, 2007.

[153] F. Shi, E.M. Petriu, and A. Cordeiro. Human Action Recognition from Lo-
cal Part Model. In IEEE International Workshop on Haptic Audio Visual
Environments and Games (HAVE), 2011.

[154] J. Shi and C. Tomasi. Good Features to Track. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 593–600, 1994.

[155] Z. Shou, D. Wang, and S.F. Chang. Temporal Action Localization in
Untrimmed Videos via Multi-stage CNNs. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1049–1058, 2016.

[156] K. Simonyan and A. Zisserman. Two-Stream Convolutional Networks for Ac-
tion Recognition in Videos. In Advances in Neural Information Processing
Systems (NIPS), 2014.

[157] B. Singh, T.K. Marks, O. Tuzel M. Jones, and M. Shao. A Multi-Stream
Bi-Direction recurrent Neural Network for Fine-Grained Action Detection.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1961–1970, 2016.

[158] S. Singh, C. Arora, and C.V. Jawahar. First Person Action Recognition Using
Deep Learned Descriptors. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2620–2628, 2016.

[159] J. Sivic and A. Zisserman. Efficient Visual Search of Videos Cast as Text
Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 31:591–606, 2009.

[160] C. Sminchisescu, A. Kanaujia, L. Li, and D. Metaxas. Conditional Models for
Contextual Human Motion Recognition. In IEEE International Conference
on Computer Vision (ICCV), pages 1808–1815, 2005.

[161] C. Snoek, B. Ghanem, J.C. Niebles, F.C. Heilbron, W. Barrios, V. Escorcia,
and P. Mettes. ActivityNet: A Large-Scale Activity Recognition Challenge.
http://activity-net.org/challenges/2016/index.html, 2016.

[162] K. Soomro and A.R. Zamir. Computer Vision in Sports, chapter 9 - Action
Recognition in Realistic Sports Videos, pages 181–208. Springer, 2014.

[163] K. Soomro, A.R. Zamir, and M. Shah. UCF101: A Dataset of 101 Human
Actions Classes from Videos in the Wild. Technical Report CRCV-TR-12-01,
University of Central Florida, 2012.

119

http://activity-net.org/challenges/2016/index.html

REFERENCES REFERENCES

[164] R. Souvenir and J. Babbs. Learning the Viewpoint Manifold for Action Recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2008.

[165] E.H. Spriggs, F. de la Torre, and M. Hebert. Temporal Segmentation and
Activity Classification from First-Person Sensing. In IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pages 17–
24, 2009.

[166] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving
for Simplicity: The All Convolutional Net. In International Conference on
Learning Representation (ICLR), 2015.

[167] C. Stauffer and E.L. Grimson. Learning Patterns of Activity Using Real-Time
Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 22:747–757, 2000.

[168] W. Sultani and I. Saleemi. Human Action Recognition across Datasets by
Foreground-weighted Histogram Decomposition. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 764–771, 2014.

[169] W. Sultani and M. Shah. What if we do not have multiple videos of the same
action? - Video Action Localization Using Web Images. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 1077–1085, 2016.

[170] J. Sun, X. Wu, S. Yan, L. Cheong, T. Chua, and J. Li. Hierarchical Spatio-
Temporal Context Modeling for Action Recognition. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2009.

[171] C. Sutton and A. McCallum. An Introduction to Conditional Random Fields.
Foundations and Trends in Machine Learning, 4(4):267–373, 2012.

[172] M.J. Swain and D.H. Ballard. Color Indexing. International Journal of Com-
puter Vision (IJCV), 7(1):11–32, 1991.

[173] Y. Tian, R. Sukthankar, and M. Shah. Spatiotemporal Deformable Part Mod-
els for Action Detection. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2013.

[174] E. Di Tomaso and J.F. Baldwin. An Approach to Hybrid Probabilistic Models.
International Journal of Approximate Reasoning, 47(2):202–218, 2008.

[175] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning Spa-
tiotemporal Features with 3D Convolutional Networks. In IEEE International
Conference on Computer Vision (ICCV), pages 4489–4497, 2015.

[176] J.A. Tropp and A.C. Gilbert. Signal Recovery from Random Measurements via
Orthogonal Matching Pursuit. In IEEE Transactions on Information Theory,
volume 53, pages 4655–4666, 2007.

120

REFERENCES REFERENCES

[177] H. Uemura, S. Ishikawa, and K. Mikolajczyk. Feature Tracking and Motion
Compensation for Action Recognition. In British Machine Vision Conference
(BMVC), 2008.

[178] M.M. Ullah, S.N. Parizi, and I. Laptev. Improving Bag of Features Action
Recognition with Non-Local Cues. In British Machine Vision Conference
(BMVC), pages 95.1–95.11, 2010.

[179] L. van der Maaten, E. Postma, and J. van den Herik. Dimensionality Re-
duction: A Comparative Review. Technical Report 005, Tilburg University,
2009.

[180] J.C. van Gemert, M. Jain, E. Gati, and C.G.M. Snoek. APT: Action Localiza-
tion Proposals from Dense Trajectories. In British Machine Vision Conference
(BMVC), pages 1–12, 2015.

[181] G. Varol and A.A. Salah. Extreme Learning Machine for Large-Scale Action
Recognition. In THUMOS Challenge: Action Recognition with a Large Number
of Classes, 2014.

[182] A. Veeraraghavan, R. Chellappa, and A.K. Roy-Chowdhury. The Function
Space of an Activity. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 959–968, 2006.

[183] E. Vig, M. Dorr, and D. Cox. Space-Variant Descriptor Sampling for Action
Recognition Based on Saliency and Eye Movements. In European Conference
on Computer Vision (ECCV), pages 84–97, 2012.

[184] C. Vondrick, H. Pirsiavash, and A. Torralba. Anticipating Visual Represen-
tations from Unlabeled Video. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 98–106, 2016.

[185] T.H. Vu, C. Olsson, I. Laptev, A. Oliva, and J. Sivic. Predicting Actions from
Static Scenes. In European Conference on Computer Vision (ECCV), pages
421–436, 2014.

[186] H. Wang, A. Klaser, C. Schmid, and C.L. Liu. Action Recognition by Dense
Trajectories. In IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 3169–3176, 2011.

[187] H. Wang, A. Klaser, C. Schmid, and C.L. Liu. Dense Trajectories and Mo-
tion Boundary Descriptors for Action Recognition. International Journal of
Computer Vision (IJCV), 103:60–79, 2013.

[188] H. Wang and C. Schmid. Action Recognition with Improved Trajectories. In
IEEE International Conference on Computer Vision (ICCV), 2013.

[189] H. Wang and C. Schmid. LEAR-INRIA Submission for the THUMOS Work-
shop. In THUMOS Challenge: Action Recognition with a Large Number of
Classes, 2013.

121

REFERENCES REFERENCES

[190] H. Wang, M. Ullah, A. Klaser, I. Laptev, and C. Schmid. Evaluation of Local
Spatio-Temporal Features for Action Recognition. In British Machine Vision
Conference (BMVC), 2009.

[191] J. Wang, P. Liu, M.F.H. She, A. Kouzani, and S. Nahavandi. Supervised
Learning Probabilistic Latent Semantic Analysis for Human Motion Analysis.
Neurocomputing, 100:134–143, 2013.

[192] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained
Linear Coding for Image Classification. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3360–3367, 2010.

[193] L. Wang, Y. Qiao, and X. Tang. Action Recognition with Trajectory-Pooled
Deep Convolutional Descriptors. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4305–4314, 2015.

[194] L. Wang, Z. Wang, Y. Xiong, and Y. Qiao. CUHK&SIAT Submission for
THUMOS15 Action Recognition Challenge. In THUMOS Challenge: Action
Recognition with a Large Number of Classes, 2015.

[195] X. Wang, A. Farhadi, and A. Gupta. Actions ∼ Transformations. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
2658–2667, 2016.

[196] X. Wang, L.M. Wang, and Y. Qiao. A Comparative Study of Encoding,
Pooling and Normalization Methods for Action Recognition. In 11th Asian
Conference on Computer Vision (ACCV), pages 572–585, 2013.

[197] Y. Wang and M. Hoai. Improving Human Action Recognition by Non-action
Classification. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 2698–2707, 2016.

[198] Y. Wang, K. Huang, and T. Tan. Human Activity Recognition Based on
R Transform. In IEEE Computer Vision and Pattern Recognition (CVPR),
2007.

[199] Y. Wang and G. Mori. Human Action Recognition by Semilatent Topic Mod-
els. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
31(10):1762–1774, 2009.

[200] D. Weinland, E. Boyer, and R. Ronfard. Action Recognition from Arbitrary
Views using 3D Exemplars. In IEEE International Conference on Computer
Vision (ICCV), pages 1–7, 2007.

[201] D. Weinland, R. Ronfard, and E. Boyer. Free Viewpoint Action Recognition
Using Motion History Volumes. In Computer Vision and Image Understanding
(CVIU), pages 249–257, 2006.

122

REFERENCES REFERENCES

[202] G. Welch and G. Bishop. An Introduction to the Kalman Filter. Technical
Report 95-041, University of North Carolina, 2006.

[203] G. Willems, T. Tuytelaars, and L. Van Gool. An Efficient Dense and Scale-
Invariant Spatio-Temporal Interest Point Detector. In European Conference
on Computer Vision (ECCV), volume 5303, pages 650–663, 2008.

[204] D.H. Wolpert and W.G. Macready. No Free Lunch Theorems for Optimization.
In IEEE Transactions on Evolutionary Computation, pages 67–82, 1997.

[205] T. Xiang and S. Gong. Beyond Tracking: Modelling Activity and Understand-
ing Behaviour. International Journal of Computer Vision (IJCV), 67(1):21–
51, 2006.

[206] C. Xu, R. F. Doell, S.J. Hanson, C. Hanson, and J.J. Corso. A Study of Actor
and Action Semantic Retention in Video Supervoxel Segmentation. Interna-
tional Journal of Semantic Computing, 2013.

[207] Z. Xu, L. Zhu, Y. Yang, and A.G. Hauptmann. UTS-CMU at THUMOS 2015.
In THUMOS Challenge: Action Recognition with a Large Number of Classes,
2015.

[208] Y. Yacoob and M. Black. Parameterized Modeling and Recognition of Activ-
ities. In IEEE International Conference on Computer Vision (ICCV), pages
120–127, 1998.

[209] J. Yamato, J. Ohya, and K. Ishii. Recognizing Human Action in Time-
Sequential Images using Hidden Markov Model. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 379–385, 1992.

[210] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear Spatial Pyramid Matching Us-
ing Sparse Coding for Image Classification. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1794–1801, 2009.

[211] L. Yeffet and L. Wolf. Local Trinary Patterns for Human Action Recognition.
In 12th IEEE International Conference in Computer Vision (ICCV), pages
492–497, 2009.

[212] S. Yeung, O. Russakovsky, G. Mori, and L. Fei-Fei. End-to-end Learning of
Action Detection from Frame Glimpses in Videos. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2678–2687, 2016.

[213] A. Yilmaz and M. Shah. A Differential Geometric Approach to Representing
the Human Actions. In Computer Vision and Image Understanding (CVIU),
volume 109, pages 335–351, 2008.

[214] YouTube. Statistics. https://www.youtube.com/yt/press/statistics.

html, May 2005.

123

https://www.youtube.com/yt/press/statistics.html
https://www.youtube.com/yt/press/statistics.html

REFERENCES REFERENCES

[215] YouTube. Search with Freebase Topics. https://developers.google.com/

youtube/v3/guides/searching_by_topic, May 2015.

[216] G. Yu and J. Yuan. Fast Action Proposals for Human Action Detection and
Search. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1302–1311, 2015.

[217] K. Yu, T. Zhang, and Y. Gong. Nonlinear Learning using Local Coordinate
Coding. In Advances in Neural Information Processing Systems (NIPS), 2009.

[218] C. Yuan, W. Hu, X. Li, S. Maybank, and G. Luo. Human Action Recognition
under Log-Euclidean Riemannian Metric. In Asian Conference on Computer
Vision (ACCV), pages 343–353, 2009.

[219] J. Yuan, Z. Liu, and Y Wu. Discriminative Subvolume Search for Efficient Ac-
tion Detection. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 2442–2449, 2009.

[220] J. Yuan, B. Ni, X. Yang, and A.A. Kassim. Temporal Action Localization with
Pyramid of Score Distribution Features. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3093–3102, 2016.

[221] A. Zaharescu and R.P. Wildes. Anomalous Behaviour Detection Using
Spatiotemporal Oriented Energies, Subset Inclusion Histogram Comparison
and Event-Driven Processing. In European Conference on Computer Vision
(ECCV), pages 563–576, 2010.

[222] M.D. Zeiler and R. Fergus. Stochastic Pooling for Regularization of Deep Con-
volutional Neural Networks. In International Conference on Learning Repre-
sentations (ICLR), 2013.

[223] M.D. Zeiler and R. Fergus. Visualizing and Understanding Convolutional Neu-
ral Networks. In European Conference on Computer Vision (ECCV), pages
818–833, 2014.

[224] B. Zhang, L. Wang, Z. Wang, Y. Qiao, and H. Wang. Real-time Action
Recognition with Enhanced Motion Vector CNNs. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2718–2726, 2016.

[225] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local Features and
Kernels for Classification of Texture and Object Categories: A Comprehen-
sive Study. International Journal of Computer Vision (IJCV), 73(2):213–238,
2007.

[226] W. Zhang, K. Derpanis, and M. Zhu. From Actemes to Action: A Strongly-
supervised Representation for Detailed Action Understanding. In IEEE In-
ternational Conference on Computer Vision (ICCV), 2013.

124

https://developers.google.com/youtube/v3/guides/searching_by_topic
https://developers.google.com/youtube/v3/guides/searching_by_topic

REFERENCES REFERENCES

[227] Z. Zhang, Y. Hu, S. Chan, and L. Chia. Motion Context: A New Represen-
tation for Human Action Recognition. In European Conference on Computer
Vision (ECCV), pages 817–829, 2008.

[228] Y. Zhou, B. Ni, R. Hong, M. Wang, and Q. Tian. Interaction Part Mining: A
Mid-Level Approach for Fine-Grained Action Recognition. In IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 3323–3331, 2015.

[229] Y. Zhou, B. Ni, R. Hong, X. Yang, and Q. Tian. Cascaded Interactional
Targeting Network for Egocentric Video Analysis. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1904–1913, 2016.

[230] J. Zhu, B. Wang, X. Yang, and W. Zhang. Action Recognition with Actons.
In IEEE International Conference on Computer Vision (ICCV), pages 3559–
3566, 2013.

[231] W. Zhu, J. Hu, G. Sun, X. Cao, and Y. Qiao. A Key Volume Mining Deep
Framework for Action Recognition. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1991–1999, 2016.

125

	1 Introduction
	2 Benchmark Datasets
	2.1 Testing Protocol
	2.2 Static Background
	2.2.1 The KTH Dataset
	2.2.2 The Weizmann Dataset
	2.2.3 MPII Cooking Activities Dataset
	2.2.4 Discussion

	2.3 Dynamic Background
	2.3.1 The CMU Crowded Videos Dataset
	2.3.2 The MSR Action Dataset I, II

	2.4 Activities
	2.4.1 The UC Berkeley Dataset
	2.4.2 UCF Sports Dataset
	2.4.3 The Olympic Dataset
	2.4.4 Sports-1M
	2.4.5 Discussion

	2.5 Movies
	2.5.1 Hollywood1
	2.5.2 Hollywood2
	2.5.3 Discussion

	2.6 Home Videos
	2.6.1 UCF11 (YouTube Action), UCF50, and UCF101
	2.6.2 ActivityNet
	2.6.3 Discussion

	2.7 The Human Motion Databases
	2.7.1 HMDB51
	2.7.2 J-HMDB

	2.8 Challenges
	2.8.1 THUMOS' 13
	2.8.2 THUMOS' 14
	2.8.3 THUMOS' 15
	2.8.4 ActivityNet Challenge
	2.8.5 Final Remarks on the Challenges

	2.9 Summary

	3 Image Representation
	3.1 Feature Extraction
	3.1.1 Sampling Methods
	3.1.2 Feature Descriptors

	3.2 Encoding Methods
	3.2.1 Codebook Generation
	3.2.2 Assignment Methods
	3.2.3 Pooling and Normalization
	3.2.4 Discussion on Encoding Methods

	3.3 Feature Post-processing
	3.4 Final Remarks

	4 Classification
	4.1 Comparison Metrics
	4.2 Deterministic Models
	4.2.1 Lazy Learners
	4.2.2 Eager Learners

	4.3 Probabilistic Models
	4.3.1 General Classifiers
	4.3.2 Temporal State-Space Classifiers

	4.4 Final Remarks

	5 Current Status
	5.1 Current Trends
	5.2 Open Problems

	Appendix A Related Fields
	References

