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The Structure of Multiplicative Motions
in Natural Imagery

Konstantinos G. Derpanis and Richard P. Wildes

Abstract—A theoretical investigation of the frequency structure
of multiplicative image motion signals is presented, e.g., as asso-
ciated with translucency phenomena. Previous work has claimed
that the multiplicative composition of visual signals generally
results in the annihilation of oriented structure in the spectral
domain. As a result, research has focused on multiplicative
signals in highly specialized scenarios, where highly structured
spectral signatures are prevalent, or introduced a non-linearity
to transform the multiplicative image signal to an additive one.
In contrast, in this paper it is shown that oriented structure is
present in multiplicative cases when natural domain constraints
are taken into account. This analysis suggests that the various
instances of naturally occurring multiple motion structures can
be treated in a unified manner. As an example application of
the developed theory, a multiple motion estimator previously
proposed for translation, additive transparency and occlusion is
adapted to multiplicative image motions. This estimator is shown
to yield superior performance over the alternative practice of
introducing a non-linear preprocessing step.

Index Terms—Multiplicative motion, translucency, dynamic
occlusion, pseudo-transparency, non-Fourier motion, spectral
analysis, optical flow, multiple motion.

I. INTRODUCTION

The study of spatiotemporal structure in vision is dominated
by optical flow approaches. A fundamental assumption of
these formulations is that a single motion is present within a
finite image region of analysis. This single motion assumption
commonly appears in the form of the conservation of some
image feature property (e.g., brightness [20], phase [15], etc.).
The performance of optical flow approaches, as measured on
the synthetic Yosemite sequence [5], has steadily improved
to the point where state-of-the-art algorithms obtain an im-
pressive average angular error (AAE) of 2o (equivalent to
approximately 0.1 pixels). However, caution should be taken
when using these results to predict performance with real-
world imagery. As pointed out by several researchers (e.g.,
[3], [5]), the Yosemite sequence is a relatively simple example
that does not contain significant multiple motion phenomena,
as one frequently encounters in nature as dynamic occlu-
sion, pseudo-transparency (e.g., partially obscuring foliage)
and transparency/translucency (e.g., stained glass, atmospheric
effects, lighting and shadows). To highlight these issues and
others, there has been growing interest in the community in
introducing challenging real-world data sets with ground truth
[4], [24]. Not surprisingly, on these new data sets the state-
of-the-art approaches perform relatively poorly in regions not
conforming to the intrinsic assumptions of the optical flow
algorithms.

The introduction of challenging test data sets highlights
the limitations in the dynamic image models that underlie
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extant image motion estimators based on optical flow. From
a practical point of view, some of these difficulties can be
surmounted by making use of robust estimation procedures
that treat data violations of standard optical flow assumptions
as outliers [25]. Nevertheless, it remains highly desirable to
develop models that capture the structure of spatiotemporal
image data where optical flow assumptions fail. Such models
can serve both to further the theoretical understanding of
dynamic imagery as well as provide the basis for more
sophisticated estimation procedures that yield accurate and
precise estimates in application to the complexities of real-
world data.

In this paper, a theoretical investigation is presented on the
frequency structure of multiplicative spatiotemporal phenom-
ena, such as translucency and dynamic occlusion. It appears
that Fleet presented the earliest analysis of multiple motions
in the frequency domain [14]. Subsequent research proposed
computational schemes for recovering the image velocity of
constituent components within this framework [6], [16]. These
approaches focused on a world where constituent patterns were
composed of a few spectral components (e.g., sinusoids and
plaids). In the real-world, the spectra of image patterns is
typically of a broadband nature [27]. For the case of dynamic
occlusion with broadband signals, Yu et al. [30] demonstrated
that the spectral features relied on in earlier work, [6], [16],
are not reliable. Key to their analysis is understanding spa-
tiotemporal structure in a more natural domain rather than in
some highly contrived one. In the present paper, this idea is
further pursued by introducing an additional natural domain
constraint, that of non-negativity of the image signal and
attenuation/transmittance in the signal composition stage. It
will be demonstrated that the addition of this simple constraint
imposes oriented spatiotemporal structure that was previously
claimed to be lost in the multiplicative composition of multiple
motions.

II. PRELIMINARIES

A. Relevance of frequency analysis
The Fourier transform is a global transform and as such care

must be taken in extrapolating results to local phenomena.
A common property among the phenomena to be studied
is that they are characterized by linear structures in the
spectral domain. These structures represent idealizations. In
practice, as a consequence of the uncertainty principle [8],
these structures are subject to blurring by the window of
analysis. The use of smooth windows (e.g., a Kaiser window
[17]) can ameliorate this problem to some degree but will not
remove it completely. The use of larger windows can also
reduce this problem; however, this increases the possibility of
mixing simple local structures. This dilemma represents an
instance of the generalized aperture problem [21].

In order to apply the Fourier transform, the signal must con-
form to the Dirichlet conditions [8]. These conditions require
that over any interval the signal is absolutely integrable, of
bounded variation and that it has a finite number of disconti-
nuities, each of which is finite. Since any measured physical
signal satisfies these conditions, the analysis is ensured to hold
for arbitrary natural image sequences.
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B. Translation

Consider an image signal, I(x, t), parameterized in terms of
spatial coordinates, x = (x, y)>, and time, t, as it moves with
velocity, v = (u, v)>. The corresponding spectrum is given
by [2], [13], [18], [29],

Ĩ(k, ωt) = Ĩ(k)δ(k>v + ωt), (1)

where k = (ωx, ωy)> denotes the spatial frequency vector,
ωt the temporal frequency,˜denotes the Fourier transform of
the corresponding signal and δ() is the Dirac delta function.
Geometrically, this can be interpreted as the spectrum being
restricted to a plane through the origin with normal (v, 1)>.
In the 2D case, consisting of a single spatial dimension, x or
y, and time, t, the planar spectra reduces to a line through the
origin. This motion is often referred to as first-order motion
or Fourier motion; whereas, the multiplicative types of motion
stimuli of concern in this paper are often referred to as non-
Fourier motion [16].

C. Generative model

For the cases of multiple motions considered in this paper,
the following recursive procedure is used as the generative
model for obtaining the final image from component layers
[1]. Assume that the depth ordering of the N layers relative
to the viewer is given, where the layer composition results
are denoted I0(x), . . . , IN−1(x). At each pixel, each layer,
n, may partially transmit the total amount of light from the
layers beneath it by a transmittance factor of Tn(x), where 0 ≤
Tn(x) ≤ 1, and may contribute its own emission of quantity
En(x), where En(x) ≥ 0. The non-negativity of the emission
term, En(x), follows from the fact that it represents power
per unit foreshortened area per unit solid angle (radiance) and
thereby cannot take on negative values. The boundary cases
of the transmittance factor consisting of zero and one, indicate
that the light from the previous layers is fully attenuated and
fully transmitted, respectively. The final composite image is
the result of applying this process recursively from back-to-
front, formally,

In(x) = Tn(x)In−1(x) + En(x), (2)

where n ≥ 0 and I0(x) ≡ E0(x). Strictly speaking, the image
signal is given in terms of irradiance, while In(x) is given
as scene radiance in the generative model, (2); however, since
image irradiance is proportional to scene radiance [19], this
distinction is neglected here, as it has been in developing other
applicable analyses of transparency, e.g. [1], [28].

In the sequel, the generative model, (2), is used as a
basis for understanding the frequency structure of various
dynamic multiplicative phenomena. Without loss of generality,
the number of layers under consideration will be restricted
to two. As in [30], the focus here is on broadband signals,
which is the typical case for real-world signals. A novel aspect
of the present model in comparison to previous formulations
used to understand the frequency structure of dynamic imagery
[6], [14], [16], [30], is the explicit introduction of the non-
negativity constraint of the image signal and transmittance. It

will be demonstrated that enforcing this constraint yields ori-
ented structure in the frequency domain that was conjectured
in earlier work to be annihilated in the composition process
[14], [16]. Interestingly, the constraint of non-negativity of
the image signal has previously appeared in work concerning
the simultaneous reconstruction of component images and
recovery of motions in imagery containing reflections and
transparency [28]; however, the authors did not pursue the
implication of the non-negativity constraint on the explicit
structure of the signal. In terms of the generative model,
(2), this case corresponds to a spatially constant transmittance
term.

III. SPECTRAL ANALYSIS OF MULTIPLICATIVE MOTION

A. Translucency

Assume that an image signal, I0(x), is viewed through a
non-refractive translucent layer with transmittance T1(x). If
components I0(x) and T1(x) are moving with velocities v0

and v1, respectively, using the generative model, (2), the image
sequence signal can be written as

I1(x, t) = T1(x− v1t)I0(x− v0t). (3)

From the generative model, the transmittance factor is strictly
non-negative. Consequently, T1(x) can be reexpressed as the
sum of a constant/DC term α and a zero mean signal, T (x) =
T1(x)− α. Furthermore, to reflect the non-negative nature of
image signals, I0(x) can be reexpressed as a constant/DC term
β plus a zero mean signal, I(x) = I0(x)−β. Including these
constraints in (3), yields,

I1(x, t) =
(

α + T (x− v1t)
)(

β + I(x− v0t)
)

= αβ + αI(x− v0t) + βT (x− v1t)
+ T (x− v1t)I(x− v0t). (4)

From the standard Fourier motion result (Section II-B), the
superposition property and the convolution theorem of the
Fourier transform [8], it can be easily shown that the Fourier
transform of (4) is

Ĩ1(k, ωt) = αβδ(k, ωt)

+ αĨ(k)δ(k>v0 + ωt) + βT̃ (k)δ(k>v1 + ωt)

+
(

T̃ (k)δ(k>v1 + ωt)
)
∗

(
Ĩ(k)δ(k>v0 + ωt)

)
,

(5)

where ∗ symbolizes the convolution operator. Assuming broad-
band component signals, the first term corresponds to a DC
term. The second and third terms correspond to two oriented
spectral planes. Their normal vectors (v0, 1)> and (v1, 1)>

denote their respective layer velocities. The final term corre-
sponds to the convolution between two 3D planes that yields
a non-oriented structure in the case of broadband signals.
Finally, one can include the emission term, E1(x), that will
result in the strengthening of the planar spectral structure of
the translucent layer.

Figure 1 illustrates the frequency spectra for the various
terms of (5) and their compositional result. For illustrative
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Fig. 1. Synthetic multiplicative transparency image sequence. The term-by-term composition of a multiplicative transparency is illustrated in the 2D, ωx−ωt,
frequency domain (magnitude terms displayed), as given by (5). The white noise structures are moving in opposite directions with a speed of 1 pixel/frame. A
Kaiser window in the spatiotemporal domain was used to reduce windowing distortions for all terms, except the DC term. For display purposes, the logarithm
of the spectrum is displayed.

purposes attention is restricted to the 2D case (x-t). The
constituent image signals are both white noise moving in
opposite directions with a speed of 1 pixel/frame. As can
be seen, enforcing the non-negativity constraint on the image
signal by way of introducing DC components reveals the ori-
ented structure of the constituent surfaces with the convolution
(distortion) term acting as a non-oriented noise-like backdrop.
In the case where both DC terms are zero, a clear violation of
the non-negativity constraint, the translucency reduces to the
non-oriented term,(

T̃ (k)δ(k>v1 + ωt)
)
∗

(
Ĩ(k)δ(k>v0 + ωt)

)
. (6)

In Fig. 2, a real translucency example is presented. This
example consists of a painting moving behind a spatially vary-
ing translucent material, that is also in motion, and captured
by a stationary video camcorder. In the epipolar slice image,
two symmetric diagonal oriented structures are clearly evident.
Correspondingly, the main power in the spectral domain is
dominated by two lines through the origin. These structures are
consistent with the constant leftward and rightward motions
present within the analysis window.

Structured lighting and shadows can also be modeled as
multiplicative motions as the local surface albedo determines
the proportion of impinging light that is reflected. In Fig. 3,
a real structured light example is presented. This example
consists of a moving structured light illuminating a textured
surface moving in the opposite direction, captured by a sta-
tionary video camcorder. In the epipolar slice image, two
symmetric diagonal oriented structures are clearly evident.
Correspondingly, the main power in the spectral domain is
dominated by two lines through the origin. These structures are
consistent with the constant leftward and rightward motions
present within the analysis window.

Beauchemin and Barron [6] also considered the case of
translucent materials. However, the authors focused on a spe-
cial case consisting of a spatially constant translucent material,
as opposed to spatially varying in the analysis above, that
results in the following weighted superposition of signals,

I1(x, t) = (1− α)E1(x− v1) + αI0(x− v0), (7)

where α represents the constant translucency factor. This case
is commonly referred to as additive transparency. By the
superposition property of the Fourier transform, its spectrum
consists of the sum of the translational spectra of the in-
dividual layers. With the exception of the distortion term,
scaling factors and DC component, the spectra for additive
and multiplicative transparency are identical. Computational
schemes for dealing with the additive transparency case are
presented in [26], [31].

B. Occlusion

In this section, the analysis of dynamic occlusion given in
[30] is extended by enforcing the non-negativity constraint on
image signals.

Assume that an image signal, I0(x), moves with a veloc-
ity v0 behind an opaque surface with transmittance T1(x)
and emission E1(x) moving with velocity v1. Unlike the
translucency case in Section III-A, the transmittance function
is now binary (i.e., T1(x) ∈ {0, 1}). The occlusion relationship
between the two surfaces can be modeled as follow,

I1(x, t) =(
1− T1(x− v1t)

)
E1(x− v1t) + T1(x− v1t)I0(x− v0t).

(8)

Next, let the non-negativity constraints be introduced to both
the transmittance and emission terms. The transmittance T1(x)
can be reexpressed as the sum of a constant/DC term α and
a zero mean signal, T (x) = T1(x) − α. While the emission
terms, E1(x) and I0(x) can be reexpressed as constant/DC
terms, β and γ, plus zero mean signals: E(x) = E1(x) − β
and I(x) = I0(x) − γ. Introducing these constraints in (8)
yields,

I1(x, t) =(
1− α− T (x− v1t)

)(
β + E(x− v1t)

)
+

(
α + T (x− v1t)

)(
γ + I(x− v0t)

)
. (9)
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Fig. 2. Real translucency example. (a) and (b) depict the “raffia weave” texture from the Brodatz database [9] and van Gogh’s Starry Night painting,
respectively, used to form the constituent layers of the translucency example. (c) and (d) represent the first and last frames of a 32 frame image sequence
depicting the Starry Night painting (i.e., opaque surface) moving behind an acetate (i.e, translucent material) depicting the “raffia weave” texture, captured
by a stationary video camcorder. The surfaces are moving in opposite directions (leftward and rightward) with approximately equal speed. The movements
were generated using computer-controlled translating stages. The white solid lines overlayed for display purposes only in (c) and (d) denote the 32 pixel
(horizontal) spatial extent of the analysis window; the temporal extent of the analysis window is 32 frames. (e) The epipolar slice of the sequence along the
analysis window; the spatial and temporal axes point rightward and downward, respectively. (f) The 2D power spectrum of the Kaiser windowed analysis
region; the origin of the spectrum lies in the middle of the image. For display purposes, the DC component has been removed.

The corresponding Fourier transform can be written as,

Ĩ1(k, ωt) =(
(1− α)β + αγ

)
δ(k, ωt)

+ αĨ(k)δ(k>v0 + ωt)

+ (1− α)Ẽ(k)δ(k>v1 + ωt)

+ (γ − β)T̃ (k)δ(k>v1 + ωt)

−
(

T̃ (k)δ(k>v1 + ωt)
)
∗

(
Ẽ(k)δ(k>v1 + ωt)

)
+

(
T̃ (k)δ(k>v1 + ωt)

)
∗

(
Ĩ(k)δ(k>v0 + ωt)

)
.

(10)

The final step consists of defining a transmittance function.
Following [14], [30], the two-dimensional Heaviside function
(i.e., unit step) is used for the support of the occluder,

T1(x) =
{

1, x>n̂ ≥ 0
0, otherwise, (11)

where n̂ denotes the unit normal vector to the occluding
boundary. Note that the DC term of (11) is given by α = 1/2.

The assumption of a linear occluding boundary can be justified
on the grounds that the region of analysis that straddles
the boundary is generally much smaller than the constituent
surfaces.

With the occlusion model fully specified, (10), it can be
interpreted with broadband signal components. The first term
corresponds to a DC component. The second and third terms
correspond to the scaled spectral planes of the occluded and
occluder signals, respectively. Their normal vectors (v0, 1)>

and (v1, 1)> denote their respective layer velocities. It is
interesting to point out here that in the present derivation both
the occluder and occluded signals explicitly appear as separate
terms (ignoring scale and bias); whereas, in the original
derivation of Eq. (12) in [30] only the occluder signal appears
undistorted. The oriented structure of the occluder signal is
reinforced by the fourth and fifth terms. Observing that the
motion of the Heaviside function is an instance of the aperture
problem [19], the final term corresponds to a convolution
between a 3D line and a 3D plane. This lone term contributes
to a distortion from the ideal case of superposition between
two oriented planes. As pointed out in [30], the influence
of the convolution of the line corresponds to a hyperbolic
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Fig. 3. Real structured light example. (a) and (b) depict the “wood grain” and “pigskin” textures, respectively, from the Brodatz database [9], used to
form the constituent layers of the structured light example. (c) and (d) represent the first and last frames of a 32 frame image sequence depicting a moving
structured light pattern projected (using an LCD projector) onto an opaque moving surface, captured by a stationary video camcorder. The structured light
and opaque surface depict the “wood grain” and “pigskin” textures, respectively. The surfaces are moving in opposite directions (leftward and rightward) with
approximately equal speed. The movement of the opaque surface was generated using a computer-controlled translating stage. The white solid lines overlayed
for display purposes only in (c) and (d) denote the 32 pixel (horizontal) spatial extent of the analysis window; the temporal extent of the analysis window is
32 frames. (e) The epipolar slice of the sequence along the analysis window; the spatial and temporal axes point rightward and downward, respectively. (f)
The 2D power spectrum of the Kaiser windowed analysis region; the origin of the spectrum lies in the middle of the image. For display purposes, the DC
component has been removed.

distortion that can be assumed negligible as compared to
noise. Importantly, the main energy of the spectrum lies on
the two spectral planes given by the motion of the occluder
and occluded signals.

C. Pseudo-transparency

Pseudo-transparency (also commonly referred to as di-
aphanous or gauzy/sheer transparency) can also be accommo-
dated by the model, (10). This spacetime structure corresponds
to the case where the holes in a perforated occluder are below
the observer’s spatial resolution limit [22]. In other words,
across the region of concern each analysis window contains
both the foreground and background. A prime example of this
case in the real-world is viewing a moving object through
some fragmented surface, such as a fence, leafless bush, grassy
field, etc. Assuming that the binary transmittance function of
the occluder is broadband, reflecting its typically “complex”
nature, (10) can again be interpreted as two oriented spectral
planes through the origin reflecting the velocities of the two
surfaces, where the distortion in the last term, as in the case of
translucency, corresponds to a non-oriented noise backdrop.

In Fig. 4, a real pseudo-transparency example is presented.
This example consists of a person moving rightward behind a
stationary chain linked fence, captured by a stationary video
camcorder. In the epipolar slice image, diagonal and vertical

oriented structures are clearly evident. Correspondingly, the
main power in the spectral domain is dominated by two lines
through the origin. These structures are consistent with the
constant rightward motion and static structures present within
the analysis window.

IV. EXAMPLE APPLICATION: MULTIPLE MOTION
RECOVERY

As an example application of the theoretical analysis de-
veloped in this paper, this section considers the problem
of multiple motion recovery with multiplicatively combined
image motion signals. In order to recover the multiple motions,
the approach of Yu et al. [32] is adapted. This approach
originally was proposed in the context of translation, addi-
tive transparency and occlusion image motion signals, where
component motions were taken as giving rise to corresponding
planes in the frequency domain. Accordingly, the basic idea
behind the approach is to simultaneous fit a set of planes to the
3D power spectrum of the input image sequence to estimate
the component motions. Significantly, previous analyses of
multiple motions suggests that such an approach will fail
in application to multiplicatively combined signals, as the
component oriented structures would have been annihilated.
In contrast, the present analysis suggests that such a method
can be applied directly to the input signal, as the orientation
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(a) (b) (c) (d)

Fig. 4. Real pseudo-transparency example. (a) and (b) represent the first and last frames of a 32 frame image sequence depicting a person moving rightward
behind a stationary chain linked fence, captured by a stationary video camcorder. The white horizontal lines overlayed for display purposes only in (a) and
(b) denote the 32 pixel (horizontal) spatial extent of the analysis window; the temporal extent of the analysis window is 32 frames. (c) The epipolar slice of
the sequence along the analysis window; the spatial and temporal axes point rightward and downward, respectively. (d) The 2D power spectrum of the Kaiser
windowed analysis region; the origin of the spectrum lies in the middle of the image. For display purposes, the DC component has been removed.

structure is preserved, and that is the basis of the present
approach. For the sake of keeping the current paper self-
contained, the spectral fitting method is summarized next. The
approach breaks down into two parts: First, the input image
signal is mapped to the frequency domain and distortions
suppressed; second, Expectation-Maximization (EM) [10] is
applied to estimate the component velocities.

Mapping to the frequency domain is accomplished via
application of a windowed Fourier transform over the spa-
tiotemporal region of interest. This processing is accomplished
using a Kaiser windowed Fourier transform, as used elsewhere
in the current paper. Next, a 3D low-stop filter is applied
to mitigate the effects of distortions at low-frequencies. The
frequency response of the low-stop filter is defined as,

L(k, ωt) =
1

α + G(k, ωt;µ0, σ2
0)
− 1

α + G(0, 0, 0;µ0, σ2
0)

,

(12)
where G(k, ωt;µ, σ2) denotes the 3D Gaussian in the spectral
domain with mean value, µ0 = (0, 0, 0)>, and variance, σ2

0 =
π/16. The parameter α, which acts as a signal pedestal, is set
to 0.1.

With the data so transformed, the second part of the
method consists of iterating between an expectation step (E-
step) and a maximization step (M-step), until the velocity
estimates converge. Assuming that there are two motions in
the composition, and beginning with arbitrary initial motion
values, ŭ1 = (u1, v1)> and ŭ2 = (u2, v2)> 1, the E-step
assigns weights wi,1 and wi,2 to the i-th point as follows,

wi,1 =
1

1 + e−(ri,2−ri,1)/σ2 (13)

wi,2 =
1

1 + e−(ri,1−ri,2)/σ2 (14)

where

ri,1 = a2
i (ωi,xu1 + ωi,yv1 + ωi,t)2 (15)

ri,2 = a2
i (ωi,xu2 + ωi,yv2 + ωi,t)2, (16)

1In the following,˘ is used to distinguish empirically recovered estimates.

and ai denotes the amplitude of the i-th point in the spectral
domain. These weights represent the membership probability
for each point.

Given the weights from the E-step, the M-step solves the
following two (weighted) linear systems in a least-squares
manner,

wi,1aiωi,xu1 + wi,1aiωi,yv1 + wi,1aiωi,t = 0 (17)
wi,2aiωi,xu2 + wi,2aiωi,yv2 + wi,2aiωi,t = 0. (18)

In contrast to the approach suggested in the present paper,
i.e., analyzing the spacetime oriented structure directly, some
previous research has proposed preprocessing image sequence
data with a logarithmic transformation to deal with multiplica-
tive transparency, e.g., [7], [23]. Under such a transformation,
the multiplicative composition is changed to an additive one
and subsequent processing proceeds much the same as it would
for additive transparency (i.e., consideration of multiple dom-
inant orientations). 2 To conclude this section, an empirical
comparison is made between analyzing the signal directly (as
suggested in this paper) and the logarithmic preprocessing
step for multiple motion recovery with multiplicative image
signals. For both cases, motion estimates are recovered using
the spectral plane fitting method [32], as summarized above.

The first comparison considered a synthetic signal consist-
ing of two (non-negative) white noise signals that have been
combined multiplicatively, analogous to the pattern used to
generate Fig. 1. The component signals translate with veloc-
ities u1 = (1, 1)> and u2 = (1,−1)>. The spatiotemporal
support of the input signal was 32 × 32 × 32. For this case,
the spectral plane fitting algorithm applied directly to the
input signal successfully converged to velocity estimates of
ŭ1 = (0.924, 0.992)> and ŭ2 = (0.987,−0.973)> after 6
iterations. In contrast, the logarithmically preprocessed signal
converged to incorrect results of ŭ1 = (1.118,−0.374)>

and ŭ2 = (0.183, 1.054)>. Several additional runs of the
algorithm applied to the logarithmically preprocessed signal

2Interestingly, Langley [23] asserted a positivity constraint on the compo-
nent signals of multiplicative motions. This was for the purpose of ensuring
that the logarithmic operation was defined. The author did not, however, study
the implications of such a constraint on the explicit structure of the signal.
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were attempted by randomly varying the initial motion values
without success. As a control, the spectral plane fitting method
also was run directly on an additive combination of the same
component signals used to construct the multiplicative signal.
In this case, the algorithm converged to ŭ1 = (0.904, 0.995)>

and ŭ2 = (0.995,−0.941)>, which is close to both the ground
truth and the result of directly processing the input multiplica-
tive transparency signal. Taken together, these results suggest
that the spectral plane fitting method is directly applicable to
both additive and multiplicatively combined motion signals;
however, preprocessing with the logarithmic transformation
significantly damages performance.

As a second comparison, the real translucency example in
Fig. 2 was considered. A 32 × 32 × 32 spacetime volume
around the region marked with the white line overlaid on
the figure was used as input. While effort was made to
move the component surfaces in opposite horizontal directions
with approximately the same speed and maintain minimal
vertical motion, no strict ground truth is available; so, only
qualitative observations can be made. Here, the spectral
plane fitting algorithm applied directly to the input signal
converged to the velocities of ŭ1 = (−0.619, 0.007)> and
ŭ2 = (0.710,−0.005)>, which qualitatively is consistent
with the input. In contrast, the logarithmically preprocessed
signal erroneously converged to the velocity estimates of
ŭ1 = (−0.307, 0.048)> and ŭ2 = (0.739,−0.058)>. Again,
the spectral plane fitting method was run numerous additional
times on the logarithmically preprocessed signal while ran-
domly varying the initial motion values without a change
in the converged result. These results further demonstrate
practical relevance of the present analysis of multiple motions
for application to real imagery.

What is the cause of the relatively poor performance of the
logarithmically transformed imagery? An explanation can be
had by observing that the logarithmic transformation is com-
pressive and thereby reduces the dynamic range of the imagery
to which it is applied. In the case of the natural imagery
example, the constituent surface patterns have a relatively
small dynamic range even prior to the transformation. After
application of the logarithmic transformation, the structure in
the power spectrum attributable to the Starry Night painting
apparently is not reliably discernable from the noise in the
input signal; consequently, its motion component is poorly
estimated. Similarly, in application to the synthetic imagery,
the logarithmic transformation compresses the dynamic range
of the signal and neither of the velocities are estimated
accurately. Overall, it is seen that the method based on the
analysis presented in the present paper is not only simpler
than the alternative (it requires no logarithmic preprocessing),
it also produces more reliable results.

V. DISCUSSION

The contributions of this paper are both theoretical and
practical. From a theoretical point of view, the analysis shows
that five major classes of image motion patterns can be
treated in a unified manner simply through consideration of the
physical constraint that natural image signals cannot take on

negative values. In particular, the cases of translational motion,
additive transparency, dynamic occlusion, pseudo-transparency
and multiplicative transparency are all characterized by dom-
inant planes through the origin in the spectral domain, where
the planes are indicative of the individual component motion
patterns (see Fig. 5).

From a practical point of view, with the common structure
of various multiple motion patterns revealed, correspondingly
unified image processing and inference mechanisms can be
developed. Such developments can remove the need for op-
erations that proceed on a case-by-case basis, including po-
tentially complicated integration mechanisms. As an example,
a spectral plane fitting mechanism, previously demonstrated
with respect to translation, additive transparency and occlusion
[32], was generalized in Section IV of this paper to apply
to multiplicative multiple motion estimation as well. More
generally, the theoretical developments can serve to motivate
further techniques for image sequence processing and inter-
pretation based on spatiotemporal orientation measurements,
irrespective of whether multiple motions are present or not
and irrespective of whether multiple motions are combined
additively or multiplicatively. For example, recent techniques
for segregating and delineating boundaries between a wide
range of juxtaposed spatiotemporal patterns in image se-
quences based on spacetime orientation measurements has
its theoretical foundation in the present analysis of multiple
motions [11], [12]. Along these lines, a practical limitation
that will enter into the application of such techniques will
arise from how fine grained a distinction can be made between
multiple orientations in visual spacetime, I(x, t).

As discussed in Section IV, an alternative to the approach
suggested in the present paper is to preprocess the input image
sequence with a logarithmic transformation to deal specifically
with the case of multiplicative transparency [7], [23]. Such
an approach has significant limitations. First, it suggests that
multiplicative transparency be dealt with as a special case,
including attendant issues of integration with results produced
in terms of other motion classes. Second, the logarithmic
transformation is compressive and thereby will result in a
significant reduction of the signal-to-noise ratio. Indeed, the
practical ramification of such reductions were seen in the
experiments reported in Section IV. Moreover, the analysis
presented in this paper shows that such a transformation
of the image data is not needed, as the physical nature of
the signal already ensures that the data is amenable to a
uniform treatment in terms of orientation processing for an
important range of image motion patterns: single translation,
additive transparency, dynamic occlusion, pseudo-transparency
and multiplicative transparency.
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(a) (b) (c) (d) (e)

Fig. 5. Comparison of 2D spectra of various spacetime structures with white noise sequences. Each of the patterns are windowed with a Kaiser window
prior to applying the Fourier transform. Each of the component layers move with a speed of 1 pixel/frame; motion is in opposite directions in the case of
multiple components. (a)-(e) The magnitude spectra for: (a) translational motion, (b) additive transparency, (c) dynamic occlusion, (d) pseudo-transparency
and (e) multiplicative transparency; the origin of the spectrum lies in the middle of the image. The pseudo-transparency case was realized using white noise
patterns for the emission terms and a numerically rounded low-pass white noise pattern for the transmittance factor. Each of these spacetime structures are
characterized by oriented lines passing through the origin, where their orientation reflects the speed and direction of motion of the constituent layers. For
display purposes, the DC components have been removed.
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