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Abstract: Image-guided liver surgery aims to enhance precision of resection and ablation by providing fast localization of tumors
and adjacent complex vasculature to improve oncologic outcome. This paper presents a novel end-to-end solution for fast stereo
reconstruction and motion estimation that demonstrates high accuracy with phantom and clinical data. Our computationally effi-
cient coarse-to-fine stereo approach facilitates liver imaging by accounting for low texture regions, enabling precise 3D boundary
recovery through the use of adaptive windows and utilizing a robust 3D motion estimator to reject spurious data. To the best of our
knowledge, ours is the only adaptive coarse-to-fine matching approach to reconstruction and motion estimation that registers time
series of reconstructions to a single key frame for registration to a volumetric CT scan. The system is evaluated empirically in con-
trolled laboratory experiments with a liver phantom and motorized stages for precise quantitative evaluation. Additional evaluation
is provided through testing with patient data during liver resection.

1 Introduction
Liver resection is the only potentially curative therapy for liver can-
cer but often represents a surgical challenge due to the location
of tumors throughout complex, delicate vasculature [1, 2]. Image-
guided surgical techniques improve intraoperative localization [3].
While image guidance has become the standard of care in neu-
rosurgery, the lack of non-rigid correction and reliance on static
intraoperative data has hindered adoption in liver surgery. By imag-
ing the liver in real time and providing the surgeon continuous
feedback regarding the localization of tumors relative to adjacent
major vasculature, the likelihood of an incomplete resection or
inadvertent liver injury should be minimized.

A variety of approaches have been proposed to acquire real-time
intraoperative data, typically in isolation. Intraoperative 3D structure
recovery that relies on monocular imagery has been explored, but
is often susceptible to error and suffers scale ambiguities without
the presence of external markers [4–7]. Instead of directly comput-
ing 3D structure from monocular imagery, one approach has been
explored that frames the problem of overlaying preoperative volu-
metric information onto the intraoperative 2D video as that of com-
puting a projection matrix from 2D-3D correspondences between
the video sequence and preoperative CT [8]. Reconstruction from
stereo imagery using so-called local [9, 10], semi-global [11, 12]
and global approaches [13–17] also has been considered, where the
main differences can be viewed as trade-offs between computational
efficiency and the complexity of smoothness integration employed in
image matching. Previous work has also considered a visual odom-
etry based approach, making use of the quadrifocal constraints to
estimate binocular laparoscopic camera motion in a surgical envi-
ronment [18]. Stereo imaging has emerged as a promising modality
for acquiring rich continuous intraoperative surface data in neuro-
surgery [19, 20], but a number of challenges need to be solved for
such systems to perform adequately in liver surgery. Among the most
pressing and immediate challenges are that stereo reconstruction in
the liver is non-trivial: the liver is a sparsely textured organ with few
features to drive reconstruction algorithms and specular reflections
further compromise reconstruction accuracy.

Existing systems for optical organ registration in surgery have
been proposed; however, they typically rely on techniques that
may ultimately hinder their adoption in soft tissue surgery. Some
deployed systems benefit from having a rigid reference frame (e.g.,
neurosurgery) and assume relatively little deformation of the tar-
get organ with respect to this reference [21, 22]. Other more recent
research has considered automated rigid registration of a liver sur-
face model with a preoperative CT scan by matching shape-based
feature descriptors [23]. As rigid constraints are not always applica-
ble to soft tissue surgery, the use of cross-modality fiducials has been
proposed for use on the body [24, 25] and on the organ itself [26].
The use of fiducials creates additional invasive steps in the work-
flow of typical procedures to the degree that it is often desirable to
avoid their use altogether. Furthermore, their utility often diminishes
greatly as their placement becomes separated from the surgical sur-
face of interest. Other systems operate through the use of manually
chosen feature points on the visible anatomy [27]. The reliance on
the manual selection and tracing of points in the image sequence is
undesirable as it places a barrier for the autonomous operation of
the system as a whole. Arguably, the most applicable approach to
date is the use of intraoperative cone beam CT (CBCT) as a bridging
modality [28]. The use of CBCT allows for the use of a non-rigid
biomechanically driven registration technique [29] for aligning the
preoperative CT and intraoperative CBCT scans which allows for the
system to compensate for the large non-rigid deformation between
the two sources of data. However, the use of CBCT exposes the
patient (and surgical team) to repeated doses of radiation to provide
this reference.

In the light of previous research, the primary contribution of this
work is a novel end-to-end system for fast surface reconstruction
and motion estimation for alignment with a preoperative CT scan.
Specifically, we deem this system to be “end-to-end” as the proposed
system utilizes manual input for initialization purposes only and
requires no human intervention nor does it rely on any intraoperative
bridging modalities (such as open MRI, CBCT, etc) during subse-
quent operation. The current instantiation of the system is designed
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Fig. 1: System Diagram. Input images from stereo video cameras are shown in grey level with red box indicating the region of analysis.
Recovered stereo correspondences are shown as a disparity map referenced to the right image, with brighter grey levels indicating larger
disparities. Green lines on tracking output show recovered 2D displacement of features across time. Pre/intraoperative alignment shows overlay
of reconstructed surface map on volumetric model. See text for detailed description.

for use during intraoperative planning / exploratory phases. Exten-
sions are underway to make the system applicable for larger portions
of the surgical workflow.

Within this end-to-end system we make the following three sub
contributions. 1) To the best of our knowledge, we are the first to
use an adaptive coarse-to-fine (CTF) stereo algorithm for fast and
accurate 3D surface reconstruction in intraoperative imaging. The
approach yields data-driven dense reconstruction by allowing coarse
resolution image data to inform fine resolution reconstruction, even
in low texture regions [30]. CTF processing also leads to compu-
tational efficiency, while complementary use of adaptive windows
supports precise reconstruction of 3D boundaries. 2) We make use
of a robust, 3D motion estimator based on interframe feature match-
ing to register a time series of reconstructions to a single key frame
for registration to a volumetric CT scan. Unlike most approaches
that use the iterative closest point algorithm for 3D model registra-
tion, our feature matching-based approach ensures that registration
brings physically meaningful features into alignment and does so
without chaining multiple incremental registrations that can rapidly
lead to drift. 3) A mask denoting the boundary of the organ of inter-
est, the liver, is automatically maintained within the system. This
has been studied in a standalone fashion (e.g. [31]) but the use of
such information within the context of this system raises new insight.
Maintaining a mask of the liver boundary not only allows for effi-
cient processing of the information by restricting processing to the
portion of the video stream imaging the liver but also allows for the
system to take advantage of the fact that the intraoperative motion of
the liver during exploratory phases is predominantly rigid, allowing
for more robust motion estimation.

The system has been evaluated empirically in controlled labora-
tory experiments with a liver phantom placed on motorized stages
for precise quantitative evaluation. Our phantom-based datasets
are available to the research community and can be found at
http://vision.eecs.yorku.ca/research/medical/. Additional evaluation
has been undertaken with clinical data. Both evaluations take place in
open liver resection conditions. Notably, while much research effort
focuses strictly on laparoscopic surgeries, most liver resections are

performed as open resections due to the extent and location of dis-
ease. In our center, roughly 75% of liver resections are performed in
an open environment [32]. Moreover, laparoscopic approaches are
only suitable for certain cases where there is oncologic equivalency
between open and laparoscopic [32]. Overall, we demonstrate a clin-
ical stereo-based platform capable of reliably providing temporally
dense 3D textured data in near real-time under realistic conditions of
liver surgery.

Interestingly, the only two FDA-approved liver surgery systems
do not compensate for real-time motion [33]. More generally, com-
mercial systems rely on optical tracking, which has a stated accuracy
of < 2mm, as evaluated at a single point in time [34]. The errors
we report are within comparable bounds and our system is capable
of providing continual updates. Thus, our approach has potential to
provide precise anatomical location of tumors within complex vas-
culature, in real-time, as the liver undergoes motion throughout the
course of surgery.

2 Technical approach

Fig. 1 provides an overview of the system for recovering a time series
of 3D surface reconstructions of a surgical scene and registering to a
preoperative volumetric model. The input is a pair of synchronized
images from a stereo video camera (left and right image) and a vol-
umetric model (CT scan). The processing pipeline consists of three
main components: stereo correspondence determination, 2D feature
tracking and 6DOF motion estimation. Stereo correspondence yields
a dense disparity map between points in the left and right images.
The disparity map is projected into 3D space and filtered to produce
a 3D surface reconstruction. 2D feature tracking is applied to the
video from the right camera to provide 2D matched feature loca-
tions across the image sequence. These 2D tracks are fused with the
disparity maps to produce a 3D non-rigid deformation field. 6DOF
motion estimation regresses the 3D deformation field to a rigid
6DOF motion relating the current frame back to a keyframe. The 3D
surface reconstruction and 6DOF motion estimate are combined to
place the surface into the same reference frame as a keyframe. When
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Fig. 2: Overview of Experiments. See text for detailed description.

combined with a hand registration of the keyframe to the preopera-
tive scan, the registration of incoming frames back to the keyframe
allows for a chained registration back to the preoperative volumetric
scan of the organ of interest.

2.1 Stereo correspondence and 3D surface reconstruction

The system uses a local stereo correspondence algorithm that has
been shown to provide accurate and efficient depth estimates [30].
Given a calibrated stereo pair of images, Il(x, y) and Ir(x, y), the
algorithm yields a disparity map, d(x, y), that provides the spatial
offset between corresponding points in the input pair. The disparity
map is recovered by solving the optimization problem

d(x, y) = argmax
di∈D

∑
(u,v)∈w(x,y)

ρ [Il(u, v), Ir(u+ di, v)] , (1)

via search over disparities, di, in a specified range, D, to maxi-
mize the summed pixel-wise similarity measure, ρ, between image
intensity values within a window, w, around (x, y). Although the
algorithm does not rely on the choice of a specific similarity mea-
sure, ρ, our instantiation makes use of normalized cross correlation
(NCC). The algorithm employs coarse-to-fine processing for effi-
ciency, whereby initial low-resolution versions of the input images
yield low-resolution disparity maps that subsequently are refined
via consideration of higher-resolution images to culminate with the
resolution of the original input. The algorithm also uses adaptive
windows,w, that conform to avoid smoothing across 3D boundaries.
An example recovered disparity map for an input stereo pair is shown
in Fig. 1.

Use of known camera calibration allows for the recovered dispar-
ities to be back-projected to a 3D point cloud. The resulting point
cloud is filtered via statistical outlier removal to reject depth values
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that differ significantly from their neighbours [35] as well as resam-
pled via moving least-squares [36] to produce a smooth manifold
surface as the final 3D surface reconstruction. A manually specified
region of interest mask can be provided for an initial (key) frame in
the image sequence to restrict processing to the area to be registered
to the volumetric model. Following initial delineation, the mask is
warped automatically to all other frames in the sequence via a robust
affine estimate of image motion across the masked region [37]. An
example recovered surface reconstruction is shown in Fig. 1.

2.2 2D feature tracking and generation of a 3D deformation
field

To establish feature tracks between frames in the stereo video
sequence, 2D features are tracked in one of the video streams (the
right is used) and subsequently are projected to 3D. Tracking in
2D makes use of the “good features to track" algorithm [38]. This
algorithm restricts operations to feature points, (x, y), where the
local image gradient structure is sufficient for stable appearance
across time. Tracking is performed on the extracted features across
two images, It and It+δt, taken at times t and t+ δt, respectively
by minimizing the dissimilarity measure∑

(u,v)∈r(x,y)
[It+δt(u+ δx, v + δy)− It(u, v)]2, (2)

over windows, r, centred at the feature points. A gradient-based
solution is employed to yield the optimal feature displacement,
(δx, δy), for each feature point, (x, y). While the original formu-
lation accounted for a full affine transformation across time [38], the
simpler translational formulation given here has proved to suffice for
the cases of current interest. Example tracks are shown in Fig. 1.

Analogous to the back-projection of stereo disparity maps to
3D point clouds (Sec. 2.1), the extracted feature tracks are com-
bined with the disparity estimates at the tracked points to yield 3D
deformation fields. These fields provide a sequence of 3D feature
correspondences between all frames in the sequence, capturing both
the rigid and non-rigid components of the motion of the tracked
region in 3D.

2.3 6DOF motion estimation and pre/intraoperative
alignment

Alignment between the time sequence of 3D surface reconstructions
and the volumetric model is initialized via manual registration of
a key reference frame in the reconstructions and the model. This
registration is given as a six degrees of freedom (6DOF) rigid trans-
formation specified via a graphical user interface. (Future work will
refine the initial alignment with an automated non-rigid registra-
tion algorithm). Given this initial registration, all subsequent surface
reconstructions from the stereo video sequence are registered to the
first frame to inherit its alignment to the volumetric model.

To perform the registration across frames of the 3D surface recon-
structions, a 6DOF motion between each frame and the key frame
is recovered based on the previously recovered 3D deformation
fields (Sec. 2.2). (To complement future work that considers a non-
rigid initialization to the volumetric model, the non-rigid residual to
the 6DOF estimate can be considered.) The rigid transformation is
recovered by a robust version of an earlier algorithm according to

(R, t) = argmin
R∈SO(3), t∈IR3

n∑
i=1

‖(Rpi + t)− qi‖2 (3)

where pi and qi are 3D points in two surface reconstructions that
have been brought into correspondence at n locations tracked by
the 3D deformation field, R is a 3× 3 rotation matrix and t is a
3× 1 translation vector. The rotation is found using singular value
decomposition on the covariance matrix relating the two point sets
after placing their centroids at the origin (p′ and q′, resp.). The opti-
mal translation is then the residual created in the origin-centric point
clouds after the rotation is applied (i.e., t = q′ − Rp′). The solu-
tion is made robust using Random Sample Consensus (RANSAC) to
minimize the effect of outlier correspondences or those most effected
by any non-rigidity. Notably, registering incoming frames back to a
key frame ameliorates issues of registration drift that can occur in
the alternative approach of chaining sequential registrations between
adjacent frames over a long sequence.

Rotation-Only Translation-Only Translation+Rotation

(a) (b) (c)

(d) (e) (f)
Fig. 4: Motion Recovery Results. The recovered translation magnitude (a-c) and rotation (d-f) estimates are plotted for each of the three
laboratory motion profiles (rotation-only, translation-only, translation+rotation). The blue line indicates the motion estimate; the red line
depicts the deviation of the motion estimate from the ground truth, as actuated by the motion platform. The two plots showing a single curve
correspond to measurements where the ground truth signal was zero motion; hence, the recovered and error values are the same and only the
recovered is shown.
a-c Recovered translation magnitude.
d-f Recovered rotation.
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Rotation-Only Translation-Only

Translation+Rotation Intraoperative

Fig. 5: Surface Registration Error (SRE). SRE, (4), is shown at five degree/mm increments across the laboratory sequences. For the intraop-
erative data, four frames representing various amounts of respiratory motion were chosen to show the system performance over the largest
portion of the organ’s motion. Box plots are shown for each of the reported frames. Whiskers cover 95% of the reconstructed pointclouds. The
largest outlier for each dataset is indicated by a red asterisk.

An example final alignment between a 3D surface reconstruc-
tion and volumetric model is shown in Fig. 1. For input 640× 480
images, the system executes at 8 fps on a 3.6GHz processor. Consid-
erable speed-up is anticipated with a GPU implementation, e.g., the
slowest component of the system is stereo correspondence, which
already has been ported to run on a 512 core GPU (nVIDIA GeForce
GTX580) at 100 fps.

3 Empirical evaluation

The proposed system was evaluated empirically in both controlled
laboratory conditions and with clinical data acquired during liver
resection. Fig. 2 shows images from the test scenarios as well
as acquired images, surface reconstructions and final registrations
for both laboratory and operating room conditions. The labora-
tory dataset, depicted in Fig. 3, was acquired using a silicone liver
phantom. The phantom was rigidly affixed to a motion control plat-
form (one linear and one rotational stage - Newport Corporation,
Irvine, CA) that allowed for the phantom to undergo precise motion
patterns. The platform contains cross-modality features used for
alignment of the initial frame to a CT scan. Each laboratory test
condition consisted of a 31 frame sequence with evenly spaced
samples along the motion trajectory. Three different motion pro-
files were tested: translation only (1mm increments), rotation only (1
degree increments) and translation+rotation motions superimposed.
The laboratory dataset was acquired at a standoff distance of 700mm
to the liver (similar to the target distance for the device used intra-
operatively). The intraoperative data sequence was taken during an
open liver resection and consisted of 100 frames. In both the labora-
tory and operating room, a calibrated stereo video camera was used
for image acquisition (the gold box in the upper middle portion of
the external views shown in Fig. 2).

The translation (magnitude) and rotation components of the
recovered motions are reported for the laboratory datasets in
Fig. 4. For each of the three tested motion profiles (rotation-
only, translation-only, translation+rotation), the recovered transla-
tion magnitude is shown in panels (a-c), while the recovered rotation
angles are shown in panels (d-f). At any given frame, motion
was recovered with respect to the initial frame in the sequence.
For rotation-only it is seen that the recovered angle accurately
tracks the true motion (interframe increments of 1 degree), approxi-
mately a line of slope one and the recovered translation is correctly
very small. (Note that since the true translation has zero mag-
nitude, the error between the recovered and ground truth is the
same as the recovered and only the recovered is shown.) For the
translation-only case, the results are exactly complementary to those
of rotation-only, again showing very accurate performance. Simi-
larly, the translation+rotation shows the desired combination of the
other two cases. Notably, motion drift is not affecting the interframe
estimation over these sequences owing to the motion always being
computed relative to the initial frame. In contrast, typical approaches
that chain transformation estimates between adjacent frames to relate
a given frame back to the keyframe would be susceptible to drift.

A measure of Surface Registration Error (SRE),

SREi = ‖pi − p∗i ‖, (4)

where pi is a point in the registered stereo reconstruction of the
surface and p∗i is the closest point to pi in the preoperative vol-
ume, was calculated for all laboratory and intraoperative datasets.
The plots show the distribution of SRE over all points in the recon-
structed point clouds for the selected frames. Registration between
CT coordinates and the initial frame of each laboratory sequence
was performed in a semi-automated manner, via identification of 5
cross-modality features located on the platform supporting the phan-
tom in both the stereo imagery and in the CT scan. A similar process

Table 1 Mean and Standard Deviation of Reported Errors

SRE (mm) Translation Magnitude (mm) Rotation Angle (deg)
Dataset avg std avg std avg std

Rotation-Only 1.0274 0.8698 1.8975 0.6547 -0.4124 0.5126
Translation-Only 1.0597 0.8736 -0.1831 0.9863 1.0898 0.5744
Translation+Rotation 1.0785 0.8998 0.5656 0.4092 -0.4507 0.4095
Intraoperative 1.6493 1.4060 n/a n/a n/a n/a
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was used for the intraoperative data after an initial hand-alignment of
the datasets. This procedure defines the transformation relating the
initial (key) frame to the CT coordinate space. Subsequent frames
were registered to the initial keyframe using the approach described
in Sec 2.3 and then registered to CT space using the transforma-
tion relating the keyframe to the CT scan. Fig. 5 shows SRE for
the three laboratory datasets and the intraoperative dataset. Median
errors are typically on the order of 1mm with 95% of the points
lying under 4mm SRE across the reported datasets. Notably, the
interframe registration algorithm never explicitly minimizes SRE by
applying shape-based registration techniques (e.g., iterative closest
point); therefore, the registration is data driven with respect to the
actual positions of identified features on the surface of the organ and
is more likely to produce a physically meaningful registration.

Table 1 provides a summary of the average and standard devia-
tion of the reported SRE and motion errors for the three laboratory
datasets and the intraoperative dataset. Note that average errors and
standard deviation of the motion estimates are not provided for
the intraoperative dataset as no ground truth motion information is
available.

4 Conclusion

We have presented an end-to-end system for fast and accurate 3D
surface reconstruction and motion estimation for alignment with a
preoperative volumetric scan. Key technical innovations include the
use of an adaptive coarse-to-fine algorithm for efficient and accu-
rate 3D surface reconstruction from stereo imagery and use of a
robust, feature based 3D motion estimator for physically meaning-
ful alignment. The system has been evaluated both quantitatively
and qualitatively in controlled laboratory conditions as well as with
clinical data. The results suggest potential for integration into a clin-
ical system. Future work will make further use of the recovered
3D deformation field (Sec. 2.2) to support non-rigid refinements
for our 3D surface reconstructions to volumetric model alignments.
An extension of this approach to include subsurface registration
through the use of additional sensing modalities that support subsur-
face data acquisition during surgery (e.g., ultrasound, cone-beam CT
and open MRI) is also of interest. Appropriate application of intraop-
erative subsurface scanning and registration constraints may provide
better localization for surgeons when surgical margins are tight. Fur-
thermore, integrating subsurface information into the surface-based
registration approach is an important step for being able to measure
the correlation between measurements of registration errors at the
surface of the organ and the ability to target subsurface structures
accurately. Finally, additional testing on clinical data is desired in
order to further validate and develop these techniques.
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