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Abstract. This paper proposes a novel approach to anomalous behaviour detec-
tion in video. The approach is comprised of three key components. First, dis-
tributions of spatiotemporal oriented energy are used to model behaviour. This
representation can capture a wide range of naturally occurring visual spacetime
patterns and has not previously been applied to anomaly detection. Second, a
novel method is proposed for comparing an automatically acquired model of nor-
mal behaviour with new observations. The method accounts for situations when
only a subset of the model is present in the new observation, as when multiple
activities are acceptable in a region yet only one is likely to be encountered at any
given instant. Third, event driven processing is employed to automatically mark
portions of the video stream that are most likely to contain deviations from the
expected and thereby focus computational efforts. The approach has been imple-
mented with real-time performance. Quantitative and qualitative empirical eval-
uation on a challenging set of natural image videos demonstrates the approach’s
superior performance relative to various alternatives.

1 Introduction

Detection of anomalous behaviour relative to some model of expected behaviour is a
fundamental task in surveillance scenarios. Examples include detection of movement
in an area where none should occur (as in a secure storage facility) and detection of
“wrong way motion” where movement of objects only should occur in one direction
yet are observed in a different direction (as in movement of traffic on a one-way road).
In particular, given the increase in video coverage of public and private spaces, an au-
tomated ability to monitor the acquired data and signal deviations from expected be-
haviour would be very useful, as it could serve to alert either human or artificial systems
to analyze further the data that is acquired.

A number of challenges must be surmounted for successful detection of anomalous
behaviour in surveillance video. In essence, these challenges arise from the need to
model a wide range of potentially complicated patterns of normal activity and detect
fine deviations from that model, even while being robust to changes that are insignif-
icant. Normal activity can range from simple no temporal change through single and
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multiple motions to complicated situations of dynamic textures (e.g., backgrounds of
fluttering vegetation or water waves), including multimodal behaviour. Modeling must
be flexible to encompass this entire range. Anomaly detection must be able to register
subtle changes of interest (e.g., changes in direction or speed of motion, presence of a
coherently moving object against a camouflaging background of texture and dynamic
clutter), while not signaling insignificant changes (e.g., naturally occurring illumination
changes during the diurnal cycle, differences between objects that are manifest purely in
terms of spatial appearance without behaviour differences). It also is desirable to allow
for partial matches of observations to the model, as complicated scenarios might en-
compass multimodal behaviour and observations that correspond to any modeled mode
are acceptable, while alternatives are not. Further, in many situations an ability to in-
corporate deviations that recur over time into the model is desirable, so that they are no
longer considered anomalous.

Related Work. One general class of approach to anomaly detection in video is based
on explicit tracking of viewed objects [22,31,9,18,5]. Such approaches acquire models
of typical trajectories from tracker output over some training period and subsequently
signal deviations in observed tracks as anomalies. A significant limitation to this class
of approaches is their reliance on (visual) tracking, a still unsolved challenge.

Background subtraction techniques that model typical appearance from a camera
view can be applied to detecting behaviour anomalies (see, [27] for review and,
e.g., [14,20,36,17] for a sampling of more recent work). The simplest techniques in-
volve unimodal background models of pixelwise image intensity and have limited ap-
plicability for complicated backgrounds. Increased sophistication in modeling static
background appearance comes through consideration of pixel attributes beyond image
intensity (e.g., gradients, edges, texture). More involved techniques account for dy-
namic backgrounds by acknowledging multimodal intensity distributions, parametric
modeling, kernel-based estimation and predictive filtering. An extension of predomi-
nantly intensity-based background modeling for video operates by indexing observa-
tions relative to a database of normal videos, with failures taken as anomalies [8]. A
limitation of appearance-based approaches is their inability to abstract purely dynamic
aspects of behaviour, which can lead to overly restrictive, under-generalized models
of normal behaviour (e.g. lack of invariance to different actors performing the same
activity).

More closely related to the approach proposed in the current paper are efforts that
have more explicitly modeled the dynamic behaviour of backgrounds. Typically, such
approaches make use of some type of spatiotemporal filtering to define normal local ac-
tivity with anomalies taken as deviations from the defined model. Along these lines,
some work has appealed directly to spatiotemporal gradient measurements [30,25].
Other work has been more restricted to considering only the temporal first derivative
(blurred and quantized) [35]. Alternatively, image flow measurements have been used
to define local activity models [7,4,23,2,24]. Still other work has abstracted local flow
measurements to a simpler consideration of whether or not a pixel typically is in mo-
tion to define locally normal behaviour [21]. Direct use of spatiotemporal gradients to
define normal activity has a number of limitations, including sensitivity to image con-
trast and spatial pattern, which lead to lack of robustness to changes in illumination and
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different appearing actors performing the same activity. Further, reliance on temporal
derivative alone leads to an inability to distinguish different motion directions. Alterna-
tively, approaches that rely on (local) flow measurements are limited in the complexity
of behaviours they can capture, e.g., multiple motions at a point, temporal flicker and
dynamic textures (e.g., water, wind-blown foliage) can be difficult to model, as they vio-
late the underlying assumptions of the flow computation (e.g., brightness conservation)
and thereby yield unreliable results in such scenarios.

A number of recent approaches are concerned with modeling of non-local behaviour
(but typically building on local measurements) with application to anomaly detection
[6,25,24,29,28,32,26]. While such approaches make strides in accounting for non-local
activity, they still can be limited by overly restrictive local representations, e.g., spa-
tiotemporal gradient models that are not invariant to spatial appearance and flow mod-
els that do not account for activity that is amenable to characterization as a single local
flow vector (e.g., multiple motions and more general dynamic textures).

To account for complicated local behaviour, measures of spatiotemporal oriented en-
ergy play a prominent role in the approach proposed in the current paper. Previously,
such measures have been used in a variety of vision processing tasks, including image
enhancement and motion estimation [16], video segmentation [12], pattern categoriza-
tion [34] and activity recognition (although not generic anomaly detection) [10,13,11].

Contributions. In the light of previous research, the present approach makes four main
contributions. 1) 3D, (x, y, t), spatiotemporal oriented energy measurements are used
to represent observations. While almost any approach to anomalous behaviour detec-
tion must employ spatiotemporal filtering of some type, no previous work has made use
of the energy filtering framework proposed here, which enjoys a number of benefits in
being able to capture a wide range of image dynamics (both standard motion as well as
more complex dynamic patterns, e.g., flickering lights, swaying vegetation and water),
even while being robust to irrelevant variations (e.g., overall illumination variation and
different appearing individuals engaged in the same behaviour). 2) A novel histogram
comparison method is presented to detect anomalous behaviour relative to an acquired
model. A key component of this measure is that it accounts for partial matches of new
observations to the acquired model. 3) Event-driven processing is used to automati-
cally mark portions of the video stream that are most likely to correspond to activities
and thereby focus computational efforts. 4) The proposed approach has been realized
in real-time implementations. A detailed empirical evaluation of the implementations
is presented, which documents the contributions of its individual components and its
strong overall performance relative to alternative approaches.

2 Technical Approach

The developed approach to detecting anomalous behaviour is based on observed de-
viations from an acquired model of normal behaviour. The model is image-based and
thereby indicates expected (normal) observations on a pixelwise basis as recorded from
a specific viewpoint.
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2.1 Spatiotemporal Energy Representation

In the developed approach, both model and newly acquired video observations are rep-
resented in terms of local distributions of 3D, (x, y, t), spatiotemporal oriented energy
as derived from input imagery via application of an orientation tuned filter bank. This
representation is selected as it captures the local first-order correlation structure of vi-
sual spacetime and thereby allows a wide range of dynamic activities to be captured
(e.g., both single and multiple motions as well as more general dynamic textures) with
robustness to illumination and purely spatial appearance [12]. In particular, the cur-
rent approach to spatiotemporal orientation for anomaly detection follows closely the
previous work [12], where it was used instead for video segmentation.

To extract the orientation measurements, oriented energy filtering is realized in terms
of second derivative of 3D Gaussian filters, G2θ

(x, y, t), and their Hilbert transforms,
H2θ

(x, y, t), where θ represents the direction of the filter’s axis of symmetry. These
particular filters are selected due to their (moderately) broad tuning, which allows for
a wide range of orientations to be captured with a relatively small number of filters.
Additionally, these filters admit a steerable and separable formulation [15], which leads
to efficient computations. The filters are taken in quadrature, to yield the following local
oriented energy measure,

Eθ(x, y, t) = (G2θ
∗ I)2 + (H2θ

∗ I)2, (1)

where I ≡ I(x, y, t) denotes the input imagery and ∗ symbolizes convolution.
For the case of dynamic spacetime orientation (e.g., as related to motion phenom-

ena), each of the oriented energy measurements, (1), is confounded with spatial orienta-
tion. Correspondingly, the same pattern of activity will yield different responses across
an ensemble of oriented energy filters depending on variations in the spatial appearance
of the viewed object/event: This is an undesirable state of affairs for dynamic anomaly
detection as it would not be possible to build models of normal behaviour that are ro-
bust to irrelevant details of purely spatial appearance (e.g., sensitivity to what people
are wearing, when the concern is for how they are moving). To remove this difficulty,
the spatial orientation component of the oriented energy responses is discounted by
marginalizing this attribute via pointwise, linear combination of energy measures, (1),
that support a single spacetime orientation, as specified by the unit normal, n, corre-
sponding to its frequency domain plane. (Recall that a pattern exhibiting a single space-
time orientation, e.g., velocity, manifests as a plane through the origin in the frequency
domain [33].) In particular, the energy measure, (1), is refined to become

Ẽn(x, y, t) =
N∑

i=0

Eθi(x, y, t), (2)

where θi represents one of N + 1 equal spaced orientation tunings consistent with
direction n and N = 2 is the order of the Gaussian derivative filter (1), for details see
[12].

The resulting oriented energies are confounded with local contrast. This makes it
impossible to determine whether a high response from a particular filter is indicative
of a close match with the underlying structure or is instead a low match that yields a
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high response due to significant contrast in the signal. To arrive at a purer measure of
oriented spacetime structure, the energy measures are normalized by the sum of the
oriented responses at each point,

Êni(x, y, t) =
Ẽni(x, y, t)∑

nj∈S
Ẽnj (x, y, t) + ε

, (3)

where S denotes the set of (marginalized) oriented energies, (2), with nj a particular
sample and ε a constant, set to 1% of the maximum filter response, introduced as both
a noise floor and to avoid instabilities at points where the overall energy is small.

In the currently implemented representation,K = 6 different directions, n, are made
explicit, that correspond to leftward, rightward, upward and downward motion (each
with peak response at 1 pixel/frame movement), static (orientation orthogonal to the
image plane) and flicker (orientation orthogonal to the temporal axis); although, due to
the broad tuning of the filters employed, responses arise to a wide range of orientations
about the peak tunings. By construction, these measures are marginalized for purely
spatial appearance and normalized for contrast, which allows for a degree of robustness
to unimportant variability in observations. Further, the representation is simply realized
by an alternating series of linear (i.e., separable convolution and pointwise addition)
and pointwise non-linear operations (i.e., squaring and division); thus, efficient compu-
tations are realized.

Finally, it is straightforward to extend the described approach to multiple scales. In
particular, the input imagery is brought under a pyramid representation [19] prior to
filtering. Subsequently, the oriented filtering, (1), appearance marginalization, (2), and
normalization, (3), are performed separately at each pyramid level to realize a multi-
scale oriented energy representation. In the current implementation σ = 5 scales are
employed, with factor of

√
2 subsampling between levels and commensurate lowpass

filtering prior to subsampling.

2.2 Model Acquisition and Maintenance

The proposed model is given in terms of a histogram of spatiotemporal orientations
observed over some period of time. Since behaviours of interest are (by definition)
dynamic, only measures of orientation that arise from non-static observations are ex-
plicitly represented in the model. In particular, a key component to the method is the
concept of accumulating statistics only on interesting events: The information is ag-
gregated at the pixel level only between frames containing dynamic energy. Dynamic
energy is captured in terms of a threshold, β, on the static channel EStatic: If static
energy is greater than β, it is considered that there is no activity at the current pixel. To
formalize the notion of event-driven processing, let

ψ(x, y, t) =
{

1 if EStatic < β
0 otherwise.

(4)

and the model histogram, m(x, y), be defined as

mn(x, y) = C

t=T∑

t=1

ψ(x, y, t)Ên(x, y, t) (5)
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where mn(x, y) is the histogram bin corresponding to orientation n at location (x, y),
C is a normalization factor ensuring the histogram sums to unity and t indexes from an
initial to frame T used in building the model. The histogram at a given spatial location
over a period of time is built by concatenating the relative energy of the K spacetime
orientations, n, at each of the σ scales, thus leading to a K × σ bin histogram.

Similarly, a new observation is made by constructing a histogram, o(x, y), analogous
to the model, except that it is accumulated only over a relatively small number of frames.
In particular,

on(x, y) = C

t0+�(k/2)�∑

t=t0−�(k/2)�
ψ(x, y, t)Ên(x, y, t) (6)

where on(x, y) is the histogram bin corresponding to spatiotemporal orientation n at
location (x, y), C is a normalization factor ensuring the histogram sums to unity and t
indexes across k frames, k << T , that are used in accumulating the current observation
at time t = t0.

Finally, the model mt(x, y) at time t is updated in an ongoing fashion so as to ac-
count for the current observation, ot(x, y), according to

mt+1(x, y) = [1 − δψ(x, y, t)]mt(x, y) + δψ(x, y, t)ot(x, y) (7)

on a bin-by-bin basis with δ controlling the update rate. Notice that update is only
performed when there is an event ψ(x, y, t), (4).

2.3 Comparison of Model and New Observations

Given a model, m(x, y), and a current observation, o(x, y), anomalous behaviour is
defined in terms of deviations of the observation from the model. Given that both
the model and observation are captured as histograms, various standard comparison
methods might be invoked (e.g., χ2 test of independence or Bhattacharyya coefficient).
However, such standard methods fail to capture two key points of relevance for anomaly
detection. First, the observation might only encompass a subset of modeled activity:
This easily can be the case, due to the fact that the model statistics typically are ac-
cumulated over a relatively large number of frames, possibly incorporating multiple
activities (e.g., left and right motions); whereas, the observation statistics capture rel-
atively shorter time periods that might not encompass all modeled activities (e.g., left
motion only). Second, it is desirable to model scenarios where a lack of activity in the
current observation histogram should not be considered anomalous, even if the previ-
ously acquired model for that particular pixel differs significantly.

To address the noted points, the χ2 test of independence [3] is taken as a point of
departure and modified, as follows. In the current context, the χ2 measure between
m(x, y) and o(x, y) is given as

χ2[m(x, y),o(x, y)] =
∑

n∈S

(mn(x, y) − on(x, y))2

mn(x, y) + on(x, y)
. (8)

The first point, regarding any particular current observation not encompassing all pos-
sibilities captured in the model, can be addressed by introducing a notion of subset
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inclusion, i.e., the observed behaviour must be a subset of the modeled behaviour; else,
it will be taken as anomalous. To indicate such anomalies, a function is needed that
selects particular orientations (histogram bins), n, where there is little response in the
model (e.g., relative to some threshold, τ0) even while there is significant response in
the observation (e.g., relative to some threshold, τ1); a corresponding function can be
defined as

φ(mn, on) =
{

1, if (mn < τ0) and (on −mn > τ1)
0, otherwise

(9)

The second point, regarding a particular observation not encompassing any activity,
can be addressed by assigning decreasing weight to an observation as fewer of the
frames observed in its construction drive event-based processing as indicated by (4).
This notion can be captured by an event ratio, ρ[o(x, y)], of the number of frames that
contributed to the event-based processing, γ[o(x, y)], to the total number of frames
observed, α[o(x, y)], i.e.,

ρ[o(x, y)] =
γ[o(x, y)]
α[o(x, y)]

. (10)

Combining the original χ2 formulation, (8), with the formalization of subset inclusion,
(9), and event ratio, (10) yields the final measure of distance between a model and
observation

D[m(x, y),o(x, y)] = ρ(o)
∑

n∈S
φ(mn, on)

(mn − on)2

mn + on
, (11)

with larger distances taken as increased evidence for behaviour anomaly at (x, y) and
final anomaly detection based on a comparison to a threshold, Δ. (Explicit reference
to image coordinates, (x, y), is suppressed on the right-hand side of the final distance
measure, (11), for the sake of notational compactness.)

3 Empirical Evaluation

Three implementations of the proposed approach to detecting anomalous behaviour
have been developed, which differ according to their software and hardware utilization
and are documented in Table 1. Algorithmic parameters are the same for all implemen-
tations: β = 0.35, δ = 0.005, τ0 = 1.5/h, τ1 = 0.15/h, where h is the number of
histogram bins, i.e., h = 6 (orientations) ×5 (scales) = 30, unless otherwise noted.
The reported timings are with respect to processing an image of size 160 × 120 and
attest to the applicability of the approach to real world operational scenarios. Detection
results reported below are with respect to the naive ANSI C implementation; although,
all implementations yield similar results.

The implementations have been evaluated on a test suite of video sequences, which
are documented in Figs. 1 and 2; actual videos are provided in the supplemental mate-
rial. All sequences are of spatial dimensions 320 × 240. Each sequence was manually
groundtruthed for anomalous behaviours relative to the depicted backgrounds. For the
sake of practicality, images were groundtruthed on a coarse spatial grid of cells, shown
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Sample Recall / Precision Info

Representation Comparison

Title: Train Source: [1]
Desc: Very challenging train sequence
due to drastically varying lighting con-
ditions and camera jitter. Abnormali-
ties: People movement.
Total Frames: 19218; Training: 800

Title: Belleview Source: [1]
Desc: Cars moving through an inter-
section. Model construction during day;
testing continuing through night. Ab-
normalities: Cars entering thoroughfare
from left or right.
Total Frames: 2918; Training: 200

Title: Boat-Sea Source: [1]
Desc: A sea-boat is passing by (motion
on motion). Abnormalities: Boat move-
ment.
Total Frames: 450; Training: 200

Subset Inclusion versus χ2 Histogram Comparison

Title: Boat-River Source: [1]
Desc: Boat passing by on a river (mo-
tion on motion). Abnormalities: Boat
movement.
Total Frames: 250; Training: 80

Title: Subway-Exit Source: [2]
Desc: Surveillance camera observing
pedestrians at a subway exit. Abnormal-
ities: Wrong way motion (leftward and
downward).
Total Frames: 32426; Training: 6900

Title: Canoe Source: [21]
Desc: A canoe is passing by (motion on
motion); also, some wind-blown foliage
in background. Abnormalities: Canoe
movement.
Total Frames: 1050; Training: 200

Fig. 1. The first column shows a frame during the evaluation of the proposed method, using
the manually marked groundtruth information. The Colour coding is: green - true positive; red
- false positive; blue - false negative. The second column presents the Precision/Recall curves
(abscissa- Recall; ordinate - Precision), with each curve containing 20 measurements. The last
column provides additional documentation for each example.



Anomalous Behaviour Detection Using Spatiotemporal Oriented Energies 571

Table 1. Implemented instantiations of the approach for anomalous behaviour detection

Language Device Clock Cores Time
ANSI C Intel Core2Duo 2.4GHz 1 80 ms
SSE2 Intel Core2Duo 2.4GHz 1 24 ms
OpenCL NVIDIA 280GTX 1GHz 120 5 ms

Sample Recall / Precision Info

Event versus Non-Event Comparison

Title: Camouflage Source: [1]
Desc: A person in camouflage walking.
The right motion is learnt as the nor-
mal behaviour. There is a large pause in
the middle, to illustrate event based pro-
cessing. Abnormalities: Left motion.
Total Frames: 1629; Training: 160

Fig. 2. Same formatting as in Figure 1

overlaid on the images. All the videos, the groundtruth data, as well as the groundtruth
and the evaluation software are available online [1]. Quantitative evaluation is presented
in the form of Precision-Recall (PR) curves by varying the detection threshold, Δ, on
(11), where Recall = # True Positives

# Positives in Dataset and Precision = # True Positives
# True Positives + # False Positives . In

calculating the PR curves, false positive/negative cells adjacent to a true positive cell
are discarded.

As detailed in Section 2, the proposed approach to anomaly detection centres around
three key ideas: (i) behaviour modeling in terms of a distribution (histogram), (5), of
spatiotemporal oriented energy responses, (3), (ii) model and observation comparison
via subset inclusion, (11), and (iii) event-based processing, (4). The experiments docu-
ment how each of these components contribute to the success of the proposed approach.

Experiment 1. The benefits of representation via a distribution of spatiotemporal ori-
ented energies are manifested in cases that require robustness to variable illumination
and camouflage, even while making fine distinctions between normal and abnormal ac-

Fig. 3. Example images from Train sequence. Extreme background changes are present, as the
moving train passes through highly variable exterior lighting conditions.
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tivity. A striking example of variable illumination is presented in Train, which includes
sudden, extreme background changes caused by the moving train passing through tun-
nels, see Fig. 3 for two dissimilar backgrounds taken shortly apart and the supplemental
video. As discussed in Sec. 2.1, the bandpass nature, (1) , and response normalization,
(3), of the employed filtering make the representation invariant to additive and multi-
plicative intensity changes and these properties yield the strong performance in variable
illumination shown in Fig. 1. Robustness of the proposed approach to more gradual
changes in illumination is illustrated in Belleview, as the sequence begins during day
and progresses through night. Also of interest in this case is clutter caused by headlights
with the onset of dusk.

Spatial camouflage, where novel objects have the same texture patterns as their sur-
round also are not problematic for the proposed approach, as the representation empha-
sizes distinctions on the basis of dynamics; an example is shown in Camouflage where
the moving person is covered with the same spatial texture pattern as the background.
Dynamic camouflage can come about when normal behaviour is sufficiently erratic to
mask novel movement. Representation in terms of a distribution of spatiotemporal ori-
entations allows for such camouflage to be broken, as a wide range of image dynamics
can be captured and distinguished: The approach can encompass complicated back-
ground dynamics in its model (e.g., motion jitter and rapidly moving shadows/lights in
Train, and variable waves in Boat-Sea and Canoe), yet still detect novel moving ob-
jects as anomalies (e.g., people, boat and canoe in Train, Boat-Sea and Canoe, resp.).
Similarly, since different directions of motion can be distinguished, an observed set of
motion directions can be incorporated into the model, while alternative motion direc-
tions are marked as anomalous (e.g., wrong-way motion detection of Belleview, Subway
and Camouflage).

The benefits of the proposed representation are quantified by the PR curves for Train,
Belleview and Boat-Sea in Fig. 1, where a comparison is made to three alternatives. The
first is image intensity-based: Capturing behaviour via pixelwise image intensity Mix-
ture of Gaussians (MOG) [27], with a MOG model of normal behaviour acquired during
a training period and subsequent intensity observations judged as anomalies based on
the joint posterior probability that they belong to any of the modeled modes. The second
alternative representation is motion-based: Capturing behaviour via pixelwise Percent-
age of Fames Motion is Detected (PFMD) [21], with motion detection performed using
the opponent spatiotemporal energy magnitude (|Eup −Edown|2 + |Eleft −Eright|2 >
0.05), which in preliminary experiments yielded superiour performance to temporal dif-
ferencing used elsewhere for PFMD modeling [21]. (Notice that opponent spatiotem-
poral energy magnitude will be relatively large in response to a locally coherent motion
[34].) Both of these representations were embedded in the recently proposed behaviour
subtraction method of anomaly detection [21], as it readily handles both MOG and
PFMD models; whereas, the method proposed in the present paper is more special-
ized for distributed (histogrammed) measurements. The third alternative is based on
quantized optical-flow direction and magnitude computed at multiple, 5, scales (e.g., as
originally proposed for direction or magnitude [2] and subsequently extended to com-
bine 8 directions with magnitude [24]; the latter is used here, as it was found to pro-
vide superiour performance in preliminary experimentation). The quantized optical flow
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Input SpatioTemporal Optical Flow

Subset χ2 Subset χ2

Fig. 4. Comparison of proposed (subset inclusion), (11), vs. χ2, (8), histogram comparison mea-
sures for the Boat-River sequence (frame 161)

defines a histogram [2,24] that is substituted directly into the proposed approach by sub-
stituting for oriented energy; thus, a direct comparison is had between oriented energy
and optical flow, as all other system components are constant. With one exception, it is
seen that the alternative representations yield notably lower PR curves in comparison
to the proposed approach, as they are not able to encompass the complicated normal
behaviour that is present in the examples. The sole exception is the case of MOG ap-
plied to Boat-Sea where the appearance of boats (abnormal) are sufficiently different
from the acquired mixture that performance is comparable to the spatiotemporal repre-
sentation. Still, optical flow appears to be second best for the other two cases, Train and
Belleview.

Experiment 2. The main benefit of comparing model, (5), and observation, (6), his-
tograms via subset inclusion, (11), is that it allows for partial fits between observations
and models. This property is important so that every given observation does not need to
encompass the entire range of previously modeled behaviour. To illustrate the practical
importance of this consideration, Fig. 4 shows comparative image results of subset-
inclusion vs. χ2 histogram comparison (all other components are exactly the same as
those of the proposed method); associated PR curves are shown in Fig. 1. Here, PR
curves are shown for both spatiotemporal oriented energy as well as optical flow, as
quantized flow can be substituted directly for the energies in the proposed approach
(see Exp. 1) to show the benefits of subset inclusion beyond application to energy mea-
surements. Also, flow appeared to be the second best overall performer when com-
paring representations in Exp. 1. For Boat-River and Subway using energy as well as
flow, it is seen that for a given recall rate, χ2 has a strong tendency for lower precision
relative to subset-inclusion. For Canoe spatiotemporal energy already is performing ex-
tremely well with just χ2; however, addition of subset-inclusion allows flow to elevate
its level of performance to that of energy. These results are readily explained as χ2 is
not able to accept as normal partial matches to the model; whereas, subset inclusion is
with resulting higher precision in its detection, i.e., fewer false positives. The quantita-
tive summaries are supported in the pictorial results, especially for complicated back-
grounds (e.g., water in Boat-River and water/vegetation in Canoe, which encompass a
range of motions; whereas, any particular observations show only a subset and such
partial matches are reported as anomalies by χ2, but not by subset-inclusion. Finally,
notice that flow leads to similar performance to spatiotemporal oriented energy on Sub-
way. This can be accounted for by the fact that both normal and abnormal behaviours
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Input Event Non-Event Input Event Non-Event

Abnormal Direction - Frame 219 Normal Direction - Frame 1427

Fig. 5. Comparison of event vs. non-event based update schemes. Without event-based process-
ing, the normal behaviour (right motion) is forgotten after 300 frames of no activity (starting
at frame 803) and it is incorrectly detected as abnormal. Event-based processing successfully
maintains the model and it does not yield false positives.

(motion of pedestrians) can be captured well by flow (as well as by spatiotemporal
oriented energy). Just in this example alone, 10 orientations have been used for spa-
tiotemporal energies by adding 4 directions aligned with motion along diagonals (e.g.,
up-left, up-right, etc.) to the standard set of 6 (only 4 of which are aligned with motion
directions, left, right, up, down), in order to bring its directional discrimination more
on par with the optical flow representation, which explicitly encodes motion along di-
agonals in its histogram bins (as well as left, right, up and down, plus magnitude).
Using only 6 orientations for spatiotemporal energy in this example led to performance
slightly worse than flow in preliminary experiments, owing to poorer (motion) direction
resolution.

Experiment 3. Event-based processing influences construction of models, (5),(7), and
observations, (6), to focus computations on portions of the data where behaviour is oc-
curring, as signaled by events, (4). Not only does such processing reduce computational
load (e.g., fewer updates are performed), but it also keeps models and observations de-
fined in terms of dynamic behaviour. An interesting benefit of this processing is that
it ameliorates problems with forgetting aspects of normal behaviour during model up-
date: Without event-based processing, a modeled event will be discarded from the cur-
rent model after 1/δ frames by the update, (7). In contrast, by updating only on event
frames, the model is prevented from forgetting behaviour due to lack of activity.

Illustrative results are presented in the Camouflage example. In this case, after a nor-
mal model (rightward motion) is acquired, there is a relatively long period of time when
no activity takes place (300 frames); nevertheless, when activity resumes anomalous be-
haviour still is detected relative to the model acquired prior to the no activity period.
The benefit is quantified in the associated PR curve in Fig. 2, which compares the pro-
posed method with the same approach neglecting event-based processing. It is seen
that event-based processing yields higher precision at comparable recall for any detec-
tion threshold, Δ, as the model is better maintained. Without event-based processing
the activity following the period of no activity consistently is misclassified, as shown
in Fig. 5; whereas, with event-based processing it consistently is classified correctly.
Nevertheless, the approach still allows for the model to encompass newly recurring
behaviours (e.g. moving shadows/lights in Train), according to the update rule, (7).
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4 Discussion

This paper has presented a novel approach to detection of anomalous behaviour in tem-
poral image sequences. The approach centres around three key ideas. First, imagery is
represented in terms of distributions of spatiotemporal oriented energy to model normal
behaviour as well as record new observations. This representation allows the approach
to capture a wide range of naturally occurring behaviours while making fine grained
distinctions between model and new observation with robustness to variations in illu-
mination and purely spatial appearance. Second, model and observations are compared
via histogram subset inclusion matching. Subset inclusion matching allows for partial
matches between model and observation so that not every possible modeled activity
must occur at any given time instance to avoid being considered anomalous. Third,
event driven processing is employed to allow for focusing of computational effort on
portions of the image stream where anomalies might occur. A limitation of the current
approach is that it does not explicitly account for non-local phenomena (e.g., interac-
tions between separate local measurements in space and time). Future work will extend
the approach to deal with such matters, e.g., by overlaying a MRF on the approach’s
local observations to abstract interactions.

The entire approach has been instantiated in implementations that show real-time
performance. In empirical evaluation, the implementations yield strong performance in
being able to model a wide range of potentially complicated patterns of normal activity
and detect fine deviations from that model, even while being robust to changes that are
insignificant (e.g., illumination and spatial appearance variations). Various compared
alternative approaches were not able to yield comparatively strong results.
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