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Abstract

Goal-conditioned approaches recently have been found
very useful to human trajectory prediction, when adequate
goal estimates are provided. Yet, goal inference is difficult
in itself and often incurs extra learning effort. We propose to
predict pedestrian trajectories via the guidance of goal ex-
pertise, which can be obtained with modest expense through
a novel goal-search mechanism on already seen training
examples. There are three key contributions in our study.
First, we devise a framework that exploits nearest examples
for high-quality goal position inquiry. This approach natu-
rally considers multi-modality, physical constraints, com-
patibility with existing methods and is nonparametric; it
therefore does not require additional learning effort typical
in goal inference. Second, we present an end-to-end trajec-
tory predictor that can efficiently associate goal retrievals
to past motion information and dynamically infer possible
future trajectories. Third, with these two novel techniques
in hand, we conduct a series of experiments on two broadly
explored datasets (SDD and ETH/UCY) and show that our
approach surpasses previous state-of-the-art performance
by notable margins and reduces the need for additional pa-
rameters. Code can be found at our Project Page.

1. Introduction

Video predictive understanding on motion patterns of
human or robotic agents is essential to many real-world
intelligent systems. Forecasting the future trajectories of
pedestrians in crowded scenes is an example of such re-
search and recently has received considerable attention
[1, 12, 51, 20, 25]. It studies the ability of artificial vision
systems to anticipate the future motion of individuals from
current observations and therefore is of importance to a va-
riety of allied areas, including self-driving vehicles, service
robots and surveillance systems [38].

Research on modeling pedestrian walking trajectories
has evolved from relatively simple physical motion mod-
els (e.g., social force [13] or constant velocity [42]) to more
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Figure 1: Overview of the Query-Retrieval based framework. A test trajec-
tory with unknown future goal position is matched with expert examples
that previously have been seen and stored in an expert repository. Com-
parisons are based on same observation length test (query) and stored ex-
pert example (shown as solid lines) trajectories. This step results in multi-
modal nearest trajectories with high similarity being retrieved, i.e., those
shown in purple, red and green, as well as their goal positions (denoted as
colored flags) as potential goals for subsequent full trajectory forecasting.

sophisticated efforts that take into account social compli-
ance [30, 52, 41], enviromental awareness [27, 39, 44, 26]
as well as end-goal policies [29, 6]. Recent efforts have
found notable performance improvements by encoding goal
positions (also dubbed destinations or endpoints) together
with historically observed trajectories, with special effec-
tiveness noticed in long-term prediction horizons. These
efforts operate essentially in two steps: (i) Inference of goal
positions from estimators typically trained in parallel with
trajectory estimators; (ii) subsequent trajectory prediction
that forecasts unseen movement, conditioned on both the
past motion history and the inferred goal information. In
nature, this scheme implicitly converts trajectory extrapo-
lation to interpolation (i.e., bridging the pathway between
initial trajectories and goal positions).

Goal-based research has been seen in a variety of places,
e.g., motion planning [16] and reinforcement learning [17,
32, 8, 9]. These efforts either pre-define the desired goal
space with human supervision [7, 33] or leverage a learn-
able module to obtain that information directly from input,
e.g., preliminary states or raw images [32]. The latter is
favored by the general trajectory prediction field [29, 6],
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because typically pedestrians walk through scenes that do
not have a priori specified goal positions. However, this
choice raises an additional need: Training side models to
infer goal positions during testing, which demands extra
learnable parameters and goal annotations, if not given by
default. Moreover, the learned goals might not be of ideal
quality, e.g. violating road boundaries or traffic rules.

Contributions. In response to the above challenges, we
make three contributions. First, we focus on developing an
effective and low-budget approach that automatically ex-
plores potential goal positions from a repository of candi-
date trajectories, namely by making use of expertise based
on previous examples, without incurring additional training
procedures. Our approach leverages the power of recent ad-
vances in data-efficient machine learning, where unlabeled
data are self-annotated via metric matching on nearest la-
belled neighbors. Following this insight, we devise a goal-
retrieval algorithm that performs similarity search between
partially observed trajectories from a test set and expert ex-
amples from a training set, to obtain a small, multi-modal
set of candidate goal positions. No previous research has
used goal retrieval from an expert repository for trajectory
prediction. An overview of our approach to goal retrieval
is provided in Fig. 1. Second, we develop a subsequent tra-
jectory predictor that inputs the history of trajectory obser-
vations and the queried goal results with a novel low over-
head data-shift encoding to jointly infer a diverse, yet accu-
rate set of future trajectories. Third, we conduct extensive
experiments showing that our approach surpasses the pre-
vious best performance on both the Stanford Drone (SDD)
and the ETH/UCY datasets by 15%. Notably, our results are
achieved without involving any additional learning compo-
nents for goal inference. Code is at our Project Page.

Related work. Human trajectory forecasting has seen
great recent progress. Exploring the collective dynam-
ics behind a group of walking pedestrians in complex
scenes is one of the main focuses in the past few years
[1, 12, 3, 30, 52]. Trending methodologies for this purpose
include attention [46] and graph neural network [19] frame-
works. Meanwhile, modelling the constraints from envi-
ronments is another direction that has shown solid benefits
[39, 24, 27, 41, 44]. Producing multi-modal predictions also
has received considerable attention [12, 41, 24]. Major ap-
proaches for diversifying outputs include deep generative
models [18, 11]. and Gaussian Mixture Models [15, 30].
Our work follows the latter idea to allow for diversity in
predicted trajectories

Recently, goal conditioned approaches have shown su-
perior performance over the aforementioned approaches
[45, 35, 29, 6]. One such effort models the causal relation-
ship between semantic goals (e.g., right-turn or go-straight)
and future trajectories [35, 45, 36], while others rely on po-
sitional goals (e.g., destination coordinates) [29, 6]. Com-

mon across these approaches is establishment of a super-
vised goal estimator to assist later trajectory forecasting. In
contrast, while our work exploits goal information, it does
so with a novel, nonparametric search-based approach.

Learning from an expert is an established principle. This
research direction assumes that a group of representative ex-
amples can act as an intelligent system to model versatile
real world data. For instance, an earlier effort grouped a
set of human walking examples to model crowd trajectories
in simulation environments [23]. Some recent work also
found it useful to assist multi-modal video frame prediction
[49] as well as adaptive robot locomotion generation [50].
Other work has used example extrapolation to remedy data
under-representation for robust learning [22].

The intuition of using expert examples also has been
used in recent efforts aimed at data efficient learning (e.g.,
one-shot [47], prototype [43] and few-shot [54] learning).
Here, research finds that training of intelligent models can
depend on only a small amount of annotated examples, as
other unobserved data can be self-annotated by matching
with adjacent expert examples [2, 10, 47, 43, 48, 22].

Our proposed solution is inspired by techniques seen in
expert learning and data efficient machine learning. We ap-
ply their insight on use of expert examples to the task of goal
conditioned trajectory prediction, with a particular focus on
helping the goal inference step. We make use of available
trajectory training data to serve as an expert repository that
we can index into based on observed test trajectories. Then,
the goals of the indexed trajectories are used as input to our
full trajectory estimator. We found that running similarity
search with a customized dynamic time warping (DTW)
[40] metric yields high-quality goal estimations for unseen
test trajectories, which further produces superior evaluation
results for the overall forecasting. Notably, the searching
step can be sped by existing tools [31] to satisfy real-time
inference. We are the first to explore a nonparameteric ap-
proach to goal inference and show that it leads to state-of-
the-art performance in pedestrian trajectory prediction.

2. Technical approach

2.1. Problem formulation

We seek to predict the correct future trajectory of the ith

pedestrian in 2D coordinates: Ŷi = {(x̂ti, ŷti) ∈ R2, t =
{tobs+1, ..., tend}}, given M co-existing pedestrians and
their observed trajectories Xi = {(xti, yti) ∈ R2, t =
{1, ..., tobs}} as inputs, where i ∈ [1,M ]. More specifi-
cally, we assume the predicted coordinates (x̂t, ŷt) are ran-
dom variables that follow a bivariate Gaussian distribution,
i.e., (x̂t, ŷt) ∼ N (µx, µy, σx, σy, corrxy), so that diverse
outcomes can be sampled to support multi-modality.

Our approach proceeds in the following two steps: First,
we query pseudo goal positions (x̂tend

i , ŷtend
i ) of the testing
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Figure 2: Pipeline of our goal-retrieval based trajectory prediction algorithm. Groups of partially observed trajectories, {Xi}, are processed initially by
a Query-Search engine operating over an expert repository, X, to produce pseudo goal candidates, {x̂tend

i , ŷ
tend
i } (purple dashed box). Subsequently,

the fused information of observed trajectories and estimated goals, {X̃i}, is forwarded through a sequential encoder (green dashed box) where inputs are
embedded in a high dimensional feature, {hi}. Following social attention processing (Social ATTN), a sequential decoder (pink dashed box) recursively
predicts a bivariate Gaussian at every time step. Final predicted trajectories, {Ŷi}, are obtained via multiple sampling from the bivariate Gaussian.

input, Xi, through a search in an expert repository of ex-
ample trajectories, X. Each entry in this repository is com-
prised of a trajectory sequence, Xe, in the same format as
Xi and its corresponding end positions (xtend

e , ytend
e ). The

end positions of the Ke nearest neighbors of the test tra-
jectory, Xi ∈ X, are returned, with Ke the number re-
turned. The repository is built from training data, as de-
tailed in Sec. 3.2. Second, we predict the future trajec-
tory, Ŷi = f(Xi, x̂

tend
i , ŷtend

i ), with f(·) denoting the sub-
sequent trajectory predictor. In the following sections we
elaborate how these two steps work in detail. Figure 2 pro-
vides a summary of our overall approach.

2.2. Goal retrieval via dynamic time warping

The first component to our approach is a search engine
that runs a similarity comparison on testing data and expert
examples, i.e., those contained in X. We retrieve useful goal
estimates according to

{(x̂tend
i , ŷtend

i )}Ke
= S

(
Ke

arg min
Xe∈X

(D(Xi,Xe)

)
, (1)

whereD is a distance function between two trajectories,Ke

above the arg min operator symbolizes that the Ke entries
in X that yield the smallest distance are returned and S se-
lects the end positions of those matches. We select the Ke

smallest distance Xe by calculating the distance between
the test trajectory, Xi, and each entry in X, sorting them
by distance and taking the Ke with the smallest distance.
S simply selects the end positions associated with each of
these trajectories in the repository. In other words, we take
the goal position out of the closest Ke expert examples as
the pseudo goal for testing data.

For the matching function, D(·), we find Dynamic Time

Warping (DTW) works effectively for our needs. DTW is
a well-established approach for measuring the distance be-
tween temporal sequences [40]. Originally, it was solved
via dynamic programming. Recently, however, it has been
relaxed in computational expense, made differentiable and
gained in popularity, e.g., [5, 53, 4, 28]. What is particu-
larly interesting to us is its computational efficiency. Specif-
ically, we follow some existing examples [5, 4] to define the
matching function γ-Soft-DTW as the following

D(Xi,Xe) = DTWγ(Xi,Xe)

= minγ{〈A,∆(Xi,Xe)〉, A ∈ Rn×m},
(2)

where ∆(·) is the distance matrix (e.g., Euclidean) measur-
ing element-wise adjacency, A is the alignment matrix that
denotes the matching choices and the inner product opera-
tor, 〈〉, yields the similarity score. Here, the soft min, minγ ,
with γ ≥ 0, is defined as [5]

minγ(a1, ..., an) =

{
mini≤n ai, γ = 0

−γ logΣni=1e
−ai/γ γ > 0

(3)

where the ai represent entries in the distance matrix and γ is
a smoothing factor with value set empirically; see Sec. 3.2.

Finally, for better informed matching, we enrich the tra-
jectory descriptors by concatenating their motion informa-
tion as velocities (Vi, Ve), i.e. the argument to D in (1) be-
comes (cat(Xi,Vi), cat(Xe,Ve)). Thus, similarity con-
siders not only geo-location, but also speed and direction.

Fig. 3 plots goal search results on the evaluated datasets
using our approach. It is seen that a large portion of goal
retrievals are of high quality, e.g., 83% of test data from the
Stanford Drone Dataset [37] (a) yield retrieval error smaller
than 10 pixels, amongst which more than half are close to



0 10 20 30 40
0

200

400

600

800

1000

1200

C
ou

nt

(b) ETH

(d) ZARA2 (e) HOTEL

(c) ZARA1
0 10 20 30 40

0

200

400

600

800

1000

1200

C
ou

nt

(f) UNIV

0 10 20 30 40
0

200

400

600

800

1000

1200

C
ou

nt

(a) SDD

Figure 3: Illustration of goal retrieval quality by plotting the retrieval error
(l2 norm) distribution over test data of all datasets in our experiments (X-
axis values closer to 0, the better). These results are achieved via similarity
searching across an expert repository using dynamic time warping.

perfection, i.e., ≤1 pixel error. Goal searching on another
five datasets [23, 34] demonstrates consistently good results
(b)-(f). Notably, we are able to achieve this level of perfor-
mance without the need to learn a model, as the training data
serves as its own model in terms of the repository, X. More-
over, our similarity search through the repository can be im-
plemented with modest computational cost; see Sec. 3.5.

Following the protocol for goal conditioned trajectory
prediction proposed elsewhere [29], we assess all Ke goal
candidates with respect to groundtruth and select the one
that provides smallest error. Thus, only a single goal can-
didate, (x̂tend

i , ŷtend
i ), is used along with the test trajectory,

Xi, as input to the trajectory predictor, as described next.

2.3. Goal conditioned trajectory predictor

We now detail our subsequent trajectory predictor incor-
porating past observations, Xi, and queried goal positions,
(x̂tend
i , ŷtend

i ), to infer diverse and accurate predictions.
Goal encoding as shifting by goal. Our model handles

goal information differently from existing work, where goal
positions were concatenated with motion history in high-
dimensional feature space [29], or explicitly used to com-
pute the remaining distance as an additional input, cf . [6].
Both methods lead to extra embedding efforts.

Instead, we are motivated by the intuition of shifting
data according to the mean, adopted by work in machine
learning (e.g., batch normalization) and sequence modelling
(e.g., temporal substraction for trajectory stationarization in
Trajectron++ [41]), and find it equally sufficient to subtract
goal position values from all past motion trajectories before
encoding them with Multi-Layer Perceptrons (MLPs). By
doing this, we incorporate goal information into feature em-
bedding with zero extra effort; in particular, we define

X̃i = Xi − (x̂tend
i , ŷtend

i )

= {(xti, yti)− (x̂tend
i , ŷtend

i ), t = {1, ..., tobs}},
(4)

as our shifted input trajectory and

Fi = Wenc(X̃i) (5)

as the shifted encoding. Fi associates the projected high-
dimensional feature of 2D coordinates for every time stamp,
i.e., Fi ∈ RD×tobs and Wenc ∈ R2×D. Wenc is realized as
a MLP. An ablation study on our choice over concatenating
goals with input motion history is provided in Sec. 3.5.

Note that during training, we use the ground-truth
goal positions, (xtend

i , ytend
i ), as input for (4) to prevent

the learning process from being disturbed by noisy data,
whereas the queried goal positions are used for testing.

Trajectory Prediction. For computing outputs, Ŷi,
given a sequence of input embeddings, Fi, a seq2seq
generator implemented as two Long Short-Term Memory
(LSTM) units [14] is adopted. Sequence generation pro-
ceeds by sequentially encoding and decoding the embedded
features, followed by mapping to intermediate results that
are used recursively for subsequent prediction according to

hkenc = LSTMenc(F
k
i , h

k−1
enc ), k ∈ (1, tobs), (6)

where hkenc is the kth hidden encoder state and the initial
hidden state, h0, is sampled from a normal distribution.

For decoding, another LSTM whose first input is set to
the concatenation of the encoded history, henc, and the last
observed coordinates, Xtobs

i , is used to produce an output
hidden states sequence in a recursive fashion according to

hk+1
dec = LSTMdec

(
cat(henc, Ŷk

i ),hkdec

)
, k ∈ (tobs, tend),

(7)
where Ŷk

i is the next coordinate produced online.
To allow multi-modal forecasting, we set the output to

be the parameters of a bivariate Gaussian cf . [30, 41]:

µx, µy, σx, σy, corrxy = Wdec(h
k
dec); (8)

v̂ki ∼ N (µx, µy, σx, σy, corrxy); (9)

Ŷk
i = Ŷk−1

i + v̂ki , (10)

where Wdec is a MLP decoder that projects the decoded
LSTM hidden state, hkdec, to a 5-dimensional vector repre-
senting the bivariate Gaussian, N (µx, µy, σx, σy, corrxy).
Finally, the full prediction, Ŷk

i , can be recovered by adding
the previous prediction, Ŷk−1

i and the sampled motion vec-
tor, v̂ki , according to (9) and (10).

Social Compliance. To consider the collective effect
from co-existing pedestrians, we follow recent findings and
use an attention mechanism on pedestrians that are near to
each other according to a threshold. Within the threshold,
neighboring pedestrians, e.g., (Xi,Xj), are given a con-
nectivity value, Ci,j of 1, otherwise 0, i.e., if d(Xi,Xj)
< threshold: Ci,j = 1; else Ci,j = 0. We use the l2



norm as the distance function d(·) and choose thresholds
using precedent procedures [29, 41], as detailed in Sec. 3.2.
The attention mechanism operates on the last output of
LSTMenc, here simplified as hi. In particular, letting

e(i, j) = softmax(Wθ(hi) Wφ(hj)), (11)

the attention weighted output is given as

h̃i =
∑
j∈M

Ci,j e(i, j) Wg(hi), (12)

where Wθ and Wφ are learned linear transformation ma-
trices on arbitrary pairs of pedestrians prior to normalized
weights conversion, e(i, j). Subsequently, a weighted sum
operation, (12), is applied on the results of another learned
linear transform matrix, Wg , to produce the outputs. This
socially attentioned embedding is more informative since it
accounts for neighboring agents’ motion history as well as
their destination plans. We use this output as the input to
the trajectory decoder, (7), i.e., henc = h̃i.

2.4. Learning Scheme

We found it sufficient to train the model end-to-end
solely by minimizing the negative log-likelihood of the bi-
variate Gaussian on all pedestrians and future times,

L(θ) = −
tpred∑

k=tobs+1

M∑
i=1

log(Yi|µx, µy, σx, σy, corrxy),

(13)
where θ refers to parameters associated with all learnable
modules, i.e., Wenc, Wdec, LSTMenc, LSTMdec and atten-
tion module weights {Wφ,Wθ,Wg}.

3. Empirical evaluation
3.1. Datasets and evaluation protocol

To evaluate our approach, we choose three widely ex-
amined datasets, the Stanford Drone (SDD) [37], ETH [34]
and UCY [23] datasets. SDD is a human trajectory predic-
tion dataset that consists of 20 scenes in top down view. We
follow the train-test split in the TrajNet++ challenge [21]
and focus on pedestrians. The ETH dataset contains two
scenes (ETH and Hotel) and the UCY dataset contains 3
scenes (ZARA1, ZARA2 and UCY). They together consist
of 1536 pedestrians. For both datasets, our model takes as
input an observation of an eight timestep long trajectory and
predicts the trajectory for the next twelve timesteps.

We present prediction accuracy in terms of two well-
known metrics, Average Displacement Error (ADE) and Fi-
nal Displacement Error (FDE), given as

ADE =

∑M
i=1

∑tend

k=tobs+1
||Yk

i − Ŷk
i ||2

M × T
(14)

and

FDE =

∑M
i=1 ||Y

tend
i − Ŷtend

i ||2
M

, (15)

where M is the number of targets, T is the number of
predicted timesteps, Yk

i and Ŷk
i are the predicted and

groundtruth (resp.) positions of target i at time step k and
tend is the final predicted timestep.

Goal-based evaluation. Extant protocol for goal-based
trajectory prediction assesses an initial set of goal sam-
plings, selects the one closest to the groundtruth final tra-
jectory position and then proceeds to produce midway pre-
dictions, cf . [29]. We follow the same procedure to eval-
uate our model, but substitute the goal sampling with our
approach to goal retrieval by searching through an expert
repository, as detailed in Sec. 2.2. Prior to selection of
the single goal candidate passed to the trajectory predictor,
the initial set of candidates searched for in the repository
is Ke = 20, which we found to be effective and efficient,
which is validated in the ablation studies; see Sec. 3.5.

Best-of-N Sampling. We report the best ADE and FDE
accuracy out of multiple sampled results from our trajectory
predictor, using the single selected goal retrieval. In the
following evaluations, N is set to 20 for fair comparisons
with existing work [1, 12]. We denote this minimizing value
as Minx, e.g., Min20 for N = 20. Various values, N ∈
[5, 10], are considered in an ablation study in Sec. 3.5.

3.2. Implementation details

To build our model, we specify that LSTMenc and
LSTMdec have hidden states of dimension 128. For the
motion history encoder, Wenc, we adopt a MLP that con-
sists of sequential activations with shape of [2 → 512 →
256→ 128]. A similar MLP that has activations with shape
of [128 → 64 → 32 → 5] is used for the bivariate-GMM
decoder, Wdec. For the attention module, we specify the
linear transformation matrices, Wθ and Wφ, as two MLPs
with the same shape, [128→ 256→ 64], and the Wg as the
same but with shape [256→ 256→ 128]. Throughout, the
ReLU activation function is used to increase nonlinearity.

For the SDD dataset, training employs the Adam opti-
mizer and a learning rate 0.0003 with β1 = 0.9 and β2 =
0.99 to minimize the loss (13). The batch size is 512 and
the training proceeds 350 epochs. For the ETH and UCY
datasets, the same optimizer is adopted to train the model
for 250 epochs, with a batch size of 128. The learning rate
is initialized as 0.01 for the first 150 epochs, which decays
to 0.002 for the rest, cf . [30].

We build the expert repository, X = {Xe, x
tend
e , ytend

e },
with the same training data introduced in Sec. 3.1 for all
datasets. We also enrich the repository of the ETH and
UCY datasets by rotating all trajectories in a scene over a
range angles from 0◦ to 360◦ with an interval of 15◦. Ran-
dom rotation is often used as a data augmentation method



Evaluation Metrics (ADE / FDE) on Min20

Models ETH HOTEL ZARA1 ZARA2 UNIV AVG

Linear [1] 1.33 / 2.94 0.39 / 0.72 0.62 / 1.21 0.77 / 1.48 0.82 / 1.59 0.79 / 1.59
Social-GAN [12] 0.81 / 1.52 0.72 / 1.61 0.34 / 0.69 0.42 / 0.84 0.60 / 1.26 0.58 / 1.18
SoPhie [39] 0.70 / 1.43 0.76 / 1.67 0.30 / 0.63 0.38 / 0.78 0.54 / 1.24 0.54 / 1.15
Social-STGCNN [30] 0.64 / 1.11 0.49 / 0.85 0.34 / 0.53 0.30 / 0.48 0.44 / 0.79 0.44 / 0.75
Goal-GAN [6] 0.59 / 1.18 0.19 / 0.35 0.43 / 0.87 0.32 / 0.65 0.60 / 1.19 0.43 / 0.85
PECNet [29] 0.54 / 0.87 0.18 / 0.24 0.22 / 0.39 0.17 / 0.30 0.35 / 0.60 0.29 / 0.48
Trajectron++ [41] 0.43 / 0.86 0.12 / 0.19 0.17 / 0.32 0.12 / 0.25 0.22 / 0.43 0.20 / 0.39

Ours 0.30 / 0.56 0.09 / 0.13 0.15 / 0.28 0.12 / 0.23 0.19 / 0.44 0.17 / 0.33

Table 1: Evaluation results on the ETH and UCY datasets for next 12 timestep prediction. Numbers are taken from the minimum ADE/FDE of 20 randomly
evaluated samples, denoted as Min20. Though Linear is deterministic, we list it here as a sanity check. Bolded numbers indicate best performance.

in recent work [42, 41], to combat overfitting. We find this
augmentation unnecessary for the SDD dataset, which indi-
cates SDD is more balanced. Empirically, we set the γ-Soft-
DTW smoothing parameter to γ = 2. The social attention
threshold in Sec. 2.3 is set to 100 pixel distance for SDD
and 3 world distance for ETH/UCY, cf . [29, 41].

3.3. Overall prediction results

ETH and UCY datasets. Table 1 shows comparative
results for our algorithm vs. various alternatives. Ours per-
form on-par with the previous best method Trajectron++ on
the average ADE (i.e., 0.17 vs. 0.20), while further reduc-
ing the FDE by 15% on average, with the biggest improve-
ment happening in the ETH subset (e.g., around 30%). We
find the lowest absolute displacement error in both ADE and
FDE when evaluated on the HOTEL subset, i.e., 0.09/0.13.
The overall relative success of our approach can be ex-
plained by the discrepancy in data use. Trajectron++ uses
the full future trajectory (i.e., more than just goal positions)
to learn a latent structure in training. This structure is sup-
posed to implicitly provide future information for testing.
In contrast, we go further to use goal information more ex-
plicitly in both training and testing. (We further explore the
pecularities of the HOTEL dataset in the ablation studies.)

Especially, when compared with two other goal-based
methods, i.e., Goal-GAN [6] and PECNet [29], ours has
shown to be more effective, likely for two reasons: First,
both methods use deep generative models with a fixed prior
distribution (standard Gaussian) to approximate the goal
distribution. This paradigm has been found suffering from
diversity collapse as well as limited sample quality [49];
second, their methods are constrained to modelling the di-
versity of goal positions, not that of other trajectory points,
which naturally lose the ability to cover a diverse set of mid-
way trajectories. Instead, ours uses a nonparameteric ap-
proach to goal retrieval, which decouples the goal inference
from subsequent trajectory sampling, and therefore reprior-
itizes the sampling on the overall trajectories.

SDD dataset. The evaluation results on this dataset can

Model ADE FDE MC ↑ F ↑

Goal-GAN [6] 0.55 1.03 92.48 89.47
Ours 0.52 0.97 94.67 91.93

Figure 4: Illustration of the feasibility quality of our results on the SDD
Hyang4 scene. Most of our goal retrievals (green flags) are reasonably
close to GT goals (yellow flags) and our trajectory predictions (green dot-
ted lines) respect road boundaries. See text for definition of metrics.

be viewed in Table 2 (i.e., Ours). Looking especially at
the goal based methods (Goal-GAN [6], PECNet [29] and
Ours), it is seen that more desirable performance is ob-
served when compared to all others (e.g., graph neural net-
work based EGraph [25], scene image conditioned CGNS
[24] and the rest [12, 39]). These results show solid im-
provement from incorporating goal information into trajec-
tory forecasting. Notably, our approach again achieves best
results overall. Similar to the earlier discussion, we can ex-
plain these improvements in terms of goal search with re-
spect to an expert repository being more effective than al-
ternatives, which we further document in Sec. 3.5.

To explore further the possible performance of our
model, we also show results from full twelve step trajectory
sampling given retrieved goals (denoted as ours-F), rather
than the standard protocol we report elsewhere, i.e. using
the goal prediction (or retrieval) results for FDE and then
merging them with the first eleven timestep trajectory sam-
pling for ADE. If allowed, our model produces exceptional
results on FDE (e.g. 9.03 vs. 14.38) through refinement of
initial goal estimates. This result suggests that current goal-
based evaluation does not adequately consider the power of
goal-based estimators to influence final destinations.



Evaluation Metrics (ADE / FDE) on Min20

Metrics S-GAN -[12] Sophie [39] CGNS [24] EGraph [25] Goal-GAN [6] PECNet [29] Ours Ours-F

ADE 27.23 16.27 15.6 13.9 12.20 9.96 7.69 7.51
FDE 41.44 29.38 28.2 22.9 22.10 15.88 14.38 9.03

Table 2: Evaluation results on the SDD dataset for the next 12 timesteps trajectory prediction. Numbers are taken from the minimum of 20 random evaluated
samples, denoted as Min20. F denotes the result of sampling all next 12 steps given the retrieved goals, to reveal the full power of proposed approach.

Match D(·) ADE Time

DTW-Dual. 7.69 10.9ms
DTW-Vel. 7.95 7.1ms
DTW-Geo. 8.68 7.1ms
Euc.-Vel. 8.43 6.2ms
Euc.-Geo. 9.01 6.2ms

(a) Goal search comparison.

Methods ADE Param

Goal-Shift 7.69 7
Goal-Cat 10.74 3
Goal-Cat2 9.06 3
Goal-Res 11.43 3

(b) Goal use comparison.

Table 3: Ablation studies for accuracy and search speed vs. matching func-
tion as well as accuracy vs. goal-encoding on SDD. See text for details.

3.4. Feasibility of expert examples

To further validate our approach, we provide additional
comparisons using the feasibility evaluation protocol [6] on
the SDD Hyang-4 scene; see Fig. 4 for results. Notably, two
extra metrics are designed for this purpose: mode-coverage
(MC) that measures the portion of goal predictions (or goal
retrievals in our approach) that are distant to ground-truth
goals up to 2m (red dotted circle) and, F, denoting the ratio
of trajectories lying inside the feasible area (manually seg-
mented road boundary). Without using any goal learning,
our results outperform Goal-GAN [6]. We attribute this to
expert goal examples respecting environmental constraints,
e.g. staying on walkways. Details are in the Supplement.

3.5. Ablation studies

Goal search efficiency. Our search engine runs in real-
time, thanks to three main factors: First, relaxed soft dy-
namic time warping that can be computed with CUDA ac-
celeration [5]; second, fast search for the Ke nearest neigh-
bors to a test trajectory in the expert repository [31]; third,
the searched data entity is of low dimensionality, i.e., each
entry is a concatenation of positions and velocities of an
eight timestep trajectory. Therefore, each testing entry
would cost about 10ms to grab the nearest 20 goal exam-
ples. A thorough study of other matching options and their
efficiency is provided in Table 3a. Geo., Vel. and Euc. de-
note geo-locations, velocity and Euclidean, resp. Our pro-
posed approach is denoted DTW-Dual.

Use of goal information. Given that existing work
has turned to different strategies for employing goal infor-
mation, we conduct experiments to systematically validate
them. In particular, we study four goal use strategies: Our
proposed Goal-Shift (Eq. 4) that subtracts goal positions
from input trajectories; Goal-Cat that concatenates goals

with raw inputs before encoding; Goal-Cat2 that concate-
nates encoded goals and inputs in feature space, cf . [29];
finally, Goal-Res that concatenates the ongoing prediction
and its residual distance to the goal, cf . [6]. Results are
listed in Table 3b. Check mark indicates that the approach
incurs extra parameters. We find that the simplest strategy,
i.e., Goal-shift, produces the best ADE / FDE and that is
what we use for all results reported elsewhere in this paper.

Table 4 shows results of using our predictor without con-
ditioning on goal information. Comparison to results from
the full approach (Tables 1 & 2) shows considerable benefit
of goal conditioning. Table 4 also shows results when rather
than invoking our predictor, trajectory prediction is based
simply on the next twelve timesteps of the best matched
eight timestep trajectory in the expert repository. Again, it
is seen that the full approach provides much better results.

Number of samples. Table 5 has results of different
combinations of Ke and N , which always sum to 20, as
previous approaches typically rely on a total of 20 samples.
We find that a good balance between goal candidates and
trajectory prediction samples, (e.g., Ke = 12, N = 8), ex-
cels on the ADE; yet, the larger the Ke, the lower the FDE.

Table 6 further shows more generally that while more
goal samples yields better results, in most cases there are
diminishing returns beyond 20 samples. We also see that
the retrieved goal results most favor the HOTEL subset
amongst the five, i.e., smallest displacement error with
groundtruth goals against goal candidate at all levels. This
may be explained by a greater portion of its trajectories be-
ing linear, cf . results of Linear in Table 1.

Repository size. Table 7 shows accuracy results as the
size of the repository is reduced systematically, i.e. few-shot
goal retrieval. It is seen that there is only a gradual fall-off
in accuracy as fewer entries are made available.

Compatibility. As another comparison, for the single-
shot trajectory prediction setup (i.e., N=1) in the right-
most column of Table 5, we insert our goal retrieval results
into the pretrained trajectory predictor of PECNet [29]; we
choose that predictor module as it is trained intentionally
for deterministic prediction. We see that our goals bring in-
stant improvement, without any modification on either side.
This result reaffirms our goal retrieval quality, e.g. as shown
in Fig. 3, as well as that our goal retrieval module is readily
compatible with other approaches.
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Figure 5: Plotting of evaluation results from the proposed method, ground-truth and a comparison work (PECNet). Top row shows studied cases for the
ETH test set and bottom row shows that for the SDD test set. Each column is noted with its comparative category. From left to right: both equally good; ours
better; and both failure. We found no cases where the comparison approach was noticeably better than ours. The retrieved best prototypical examples are
shown as inset boxes to illustrate why goal examples are helpful (or misleading). Our goal retrievals always follow physical constraints and are interpretable.

Dataset ETH-UCY SDD
ADE FDE ADE FDE

Predictor w/o goal 0.35 0.65 16.35 20.65
Retrieval only 1.34 1.81 32.35 46.46

Table 4: Ablation results based on our trajectory predictor without goal
conditioning and on a retrieval-only approach.

Ke 5 10 12 15 20 20

N 15 10 8 5 1 1 *

ADE 10.39 9.65 9.43 9.89 13.24 9.11
FDE 23.40 18.43 17.32 15.82 14.38 15.20

Table 5: Ablation study on two hyperparameters, i.e. Ke and N , which
correspond to the top two rows. Each cell shows results of different con-
figuration on the SDD dataset in the ADE / FDE metrics. * denotes results
from our goal and pretrained trajectory predictor of PECNet [29].

3.6. Goal and prediction visualization

To understand further why our model exhibits its strong
results, we show visualizations of goal retrievals and trajec-
tory predictions in Fig. 5. Results from another goal-based
work, i.e., PECNet [29], are also given. For both datasets,
we provide three types of visual examples: equally good for
both approaches, ours performs better and both fail, to shed
light on the reasons behind our results.

For the ETH/UCY datasets, i.e., the top row in Fig. 5,
we plot testset trajectories of the ETH subset, from which
we have seen the most improvement. We observe that our
method performs on-par with PECNet on linear-like trajec-
tories (a), while ours can achieve better predictions on tra-
jectories with relatively high curvature (b and c). The reason
might be that DTW is efficient at curvy shape matching, cf .
[53]. Yet, both methods fail at the U-shape trajectory (d).

For the SDD dataset (bottom row), the same good per-
formance on linear trajectories is observed by both methods
(a). However, our approach performs much better when it
comes to special road conditions, e.g., 4-way intersections
and pedestrian stairs (b). We believe the reason is that a

ETH HOTEL ZARA1 ZARA2 UNIV

Ke = 5 1.01 0.27 0.45 0.45 0.60
Ke = 10 0.71 0.17 0.34 0.31 0.49
Ke = 20 0.56 0.09 0.28 0.23 0.44
Ke = 50 0.48 0.07 0.25 0.19 0.41

Table 6: Goal retrieval quality vs. various number of repository search
candidates, Ke, on the ETH and UCY datasets. Lower is better.

R(%) 10 20 30 40 60 80 90

ADE 9.12 8.68 8.10 8.02 7.84 7.73 7.70
FDE 18.83 17.06 16.20 15.80 15.92 14.46 14.40

Table 7: Ablation study on few-shot goal retrieval by having only a per-
centage, R, of the original repository available for the SDD dataset.

few expert examples have been found behaving similarly at
nearby geo-locations. We also see improved results on cases
where the alternative fails to match the speed of future tra-
jectories, e.g., either too fast or too slow (c). This result can
be attributed to use of velocity in our goal searching module
that explicitly considers matching quality in motion. Again,
for failures, neither approach captures complex motion dy-
namics, e.g., 180◦ turn or unanticipated right-turn (d).

4. Conclusions
We have introduced a novel approach to pedestrian tra-

jectory prediction, where the key innovation is the use of
goal search through an expert repository to provide end-
points for goal conditioned prediction. Our approach does
not require learning of model parameters for goal genera-
tion, yet produces high accuracy goals at modest computa-
tional expense. We also propose a novel way to use goal
data (shifting by goal) that is simpler and incurs less over-
head than current alternatives, yet sets a new state-of-the-art
on the SSD, ETH and UCY datasets with the goal condi-
tioned predictor we implemented. Moreover, when using
our goals as input to an alternative goal conditioned tra-
jectory predictor (PECNet) its performance also improves,
which suggests broad applicability of our approach.
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