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This paper presents methods for efficient recovery of accurate binocular disparity estimates in the vicin-
ity of 3D surface discontinuities. Of particular concern are methods that impact coarse-to-fine, local
block-based matching as it forms the basis of the fastest and the most resource efficient stereo compu-
tation procedures. A novel coarse-to-fine refinement procedure that adapts match window support

across scale to ameliorate corruption of disparity estimates near boundaries is presented. Extensions
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are included to account for half-occlusions and colour uniformity. Empirical results show that incorpora-
tion of these advances in the standard coarse-to-fine, block matching framework reduces disparity errors
by more than a factor of two, while performing little extra computation, preserving low complexity and
the parallel/pipeline nature of the framework. Moreover, the proposed advances prove to be beneficial for
CTF global matchers as well.
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1. Introduction

Significant strides have been made in the investigation of artifi-
cial binocular stereo. This research is driven by the wide applicabil-
ity of stereo vision, e.g. in robot manipulation, vehicle guidance
and augmented reality. In turn, these applications impose strict
requirements on developed technology to be computationally effi-
cient, accurate and precise. Of current outstanding problems in ste-
reo, of particular concern are speed-accuracy tradeoffs and poor
reconstruction in the vicinity of 3D object boundaries. The reliable
recovery of 3D boundaries is crucial and remains a shortcoming of
todays most efficient stereo algorithms, e.g. block matching-based
approaches. While computer processing power keeps increasing
and thereby provides the ability to utilize complex and computa-
tionally expensive solutions, sensor resolution increases even
faster [1], which necessitates continued development of low-
complexity algorithms.

In this paper we are concerned with the design of algorithms
with potential for rapid execution on compact, readily available
computational platforms even while exhibiting robust perfor-
mance in the vicinity of 3D boundaries. We acknowledge that re-
cent efforts have yielded a number of sophisticated, non-linear
optimization algorithms that produce remarkable results for both
textureless regions and near 3D discontinuities [2]. Nevertheless,
we instead concentrate our efforts on an alternative class of algo-
rithms, coarse-to-fine stereo matchers, as such methods remain
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important when rapid execution is at a premium. Here, if accuracy
can be improved significantly without adversely impacting com-
plexity and efficiency, then speed-accuracy trade-offs will be im-
proved correspondingly and thereby increase the real-world
deployment of machine stereo vision. As this paper mainly con-
cerns coarse-to-fine stereo correspondence procedures, the abbre-
viation CTF will be used to denote it throughout.

CTF processing is of interest for several remarkable properties. It
helps remove local minima in correspondence search by their
reduction at coarser resolutions. As commonly embedded in image
pyramids (where image sampling is commensurate with scale)
ensuing processing can reduce match ambiguities, as large match
windows at fine resolution are covered by smaller windows at
coarse resolution. Also, processing speed increases as large dispar-
ities at fine resolution can be recovered at coarse resolution with
smaller search ranges (subject to refinement at finer resolution).
While recent advances in global methods improve efficiency
[3,4], block matchers, often with CTF, remain preferred when speed
is a concern; such procedures inherently entail lower processing
demands, map well to current hardware and software architec-
tures [3,5,6] and are suitable for parallel and pipeline computation
[7].

For both local and global methods of disparity estimation, reli-
able recovery in the vicinity of 3D surface boundaries remains a
matter of concern. This problem is of particular note in conjunction
with CTF approaches, which tend to resolve poorly such geome-
tries as they are not well represented at coarser resolutions. In
the past, much research has considered recovery of binocular dis-
parity near 3D boundaries [2,3,8]. For local methods, the use of
adaptive spatial support for match windows can ameliorate issues
arising in attempts to match near 3D discontinuities by shaping
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windows to avoid poorly defined matches [9-12]. Many recent ad-
vances in disparity estimation near 3D boundaries explicitly con-
sider half-occlusions, where one view sees portions of a
background surface that are occluded to the other view by a fore-
ground surface. Some of the most impressive recent results have
been demonstrated in conjunction with global methods [13-16].
In comparison, empirical investigation of half-occlusion detection
with local processing underlines shortcomings [8]. Moreover,
occlusion treatment within CTF processing schemes is rarely dis-
cussed in the literature.

The organization of this paper is as follows. Section 1 has moti-
vated our research in CTF, block-matching stereo; further discus-
sion of related research is delayed until our approach is detailed
to better expose similarities and differences. Section 2 presents a
novel analysis of CTF stereo errors and leads to a simple, yet effec-
tive solution to 3D boundary preservation within this matching
paradigm. This section also addresses the colour segmentation
cue and the problem of half-occlusions, including our novel ap-
proach to dealing with such points within the CTF block-matching
framework. In Section 3 we document thorough, systematic empir-
ical evaluation of the proposed algorithmic solutions. Finally, Sec-
tion 4 discusses the proposed advances and their importance in the
scope of other binocular stereo approaches.

2. Adaptive coarse-to-fine stereo for 3D boundary preservation
2.1. Basic algorithm and its properties

The basic elements of CTF block binocular matching can be out-
lined as follows (see [2,3] and references cited therein). Initially
both images are brought into image pyramid representations
[17,18] via repeated filtering to remove higher spatial frequency
components, followed by commensurate subsampling. The dispar-
ity map is estimated for the coarsest level k, and then upsampled
and scaled (implicitly or explicitly) to the next finer pyramid level
k —1 where it serves to provide an initial estimate for refined
matching. The procedure continues until the finest resolution level,
k = 0, is reached. At each level, disparity is estimated using any lo-
cal stereo method. We can describe this procedure mathematically
as follows. Let I; and I, be a pair of images, .« be the number of
pyramid levels, p be the pixel-wise match cost function (e.g.
squared difference (SD) or other [3]), w be the support window
function, G be the smoothing kernel applied via the convolution
operation ®, |, be subsampling by a factor of two and 1, be upsam-
pling by a factor of two. We begin by constructing pyramids for the
two input images

B=h, 8=l YOI <j<lna: b= (Gl )L, 1)
and initializing a corresponding disparity pyramid
V(x.y)| : disp™ "' (x.y) = 0. 2)

Disparity estimation then operates coarse-to-fine over the defined
pyramids

(k) lnax > k> 05 [¥(x,y)] : disp*(x.y) = 2 - disp” (x, )1

+argmin . V)EZWZM p (1 v), B +2 - disp™ (x, )1, + V))} :
3)

The outlined CTF processing has many useful characteristics. It
helps to remove local minima in correspondence search by removal
of small details at the coarse level. CTF also allows for variable sup-
port aggregation as the same size (in terms of pixels) support region
constitutes to larger support at coarser levels. Further, large

disparities in the high-resolution images correspond to small
disparities in low-resolution subsampled images; hence, large
disparity search space is covered by smaller searches at higher
pyramid levels. The last fact makes CTF very efficient because the
algorithm can search over smaller disparity ranges at each level.
As the original disparity search range can be on the order of a
hundred for big images, the gain of CTF in terms of speed may
be crucial, especially when real-time performance is needed.
Unfortunately, 3D boundaries can be severely degraded during
CTF estimation, a side-effect that we proceed to ameliorate.

2.2. 3D boundary deterioration

Intuitively, certain errors introduced by CTF processing arise
when operating at coarse levels and estimating coarse disparities,
i.e. when the images are low-passed and subsampled. Appropriate
low-pass or band-pass filtering avoids aliasing caused by the sub-
sampling procedure. Typically, the filtering is realized via a Gauss-
ian kernel as it is causal in scale space [19] and yields an efficient
implementation.

At the same time, the low-pass filtering operation effectively
blurs the depth discontinuities, i.e. a point near a 3D boundary be-
comes a mixture of foreground and background surface colours.
The actual proportion of the mixture will depend on the ratio of
the surfaces’ areas covered by the convolution window and the
surface properties themselves (Fig. 1 shows a few examples). Thus,
pyramid-based CTF procedure, (3), cannot be expected to reliably
recover pixels in the vicinity of discontinuities, which means that
errors will be accumulated and propagated to finer levels in the
computation.

The above-described CTF discontinuity blur is quite similar to
issues in match window aggregation when applied near 3D bound-
aries and the assumption of a single surface in depth is violated.
This resulting overreach flaw, typical for window-based matching,
is well-researched and a number of efficient remedies have been
proposed, e.g. shiftable, overlapping, adaptive windows [9-
12,20]. At the same time, the combined effects of CTF projection
and match window aggregation across 3D boundaries lead to espe-
cially severe boundary deterioration. An associated technical re-
port [21] presents a rigorous analysis of these combined effects.

Furthermore, in the examples of Fig. 1, low-pass filtering attri-
butes a large portion of pixels near discontinuities to the wrong
surface. Thus, coarse disparity estimates for such points and in
their vicinity tend to be incorrect and these erroneous results are
to be upsampled and refined at finer levels propagating and
increasing the amount of errors even further. These observations
show that 3D boundary preserving CTF disparity estimation must
have two key properties. First, CTF upsampling must prevent error
accumulation incurred by combining information from surfaces at

Fig. 1. Blurring of depth discontinuities via low-pass filtering. Gray and white are
two different surfaces. Red points are various locations on the white surface close to
the discontinuities (black lines). Large semitransparent circles are the support
kernel for low-pass Gaussian blur. Note that in most cases, especially corners, the
support kernel covers significant proportion of the other surface, which means that
it is very likely to attribute those points to the wrong surface as a result of low-pass
operations.
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different depths. Second, adaptive match window aggregation
must prevent support from crossing 3D boundaries.

2.2.1. Disparity upsampling: adaptivity in scale

Assume for a moment that we can precisely recover the dispar-
ity map at a current level k and wish to refine this estimate for level
k — 1. As a part of refinement, the coarse estimate must be pro-
jected (upsampled) to finer spatial resolution; the procedure is
not uniquely defined and various alternative exist, e.g. Nearest
Neighbour, Linear, Gaussian interpolations and others [18]. Logi-
cally, it should depend on the pyramid construction procedure —
Nearest Neighbour is the most suitable for Quadtree pyramids,
while Gaussian upsampling is the best for the Gaussian and Lapla-
cian pyramid [17,18]. However, such reasoning does not quite
work for pyramids of discontinuous disparity maps.

The snapshot of CTF estimation in Fig. 2 makes matters more
precise. If some point x belongs to a uniform disparity surface, then
it makes no difference which upsampling procedure is used, as all
coarse level disparity points a, b, c and d would have the same dis-
parity. In contrast, initialization via any of the standard upsam-
plings of the disparity map recovered at the coarse level leads to
difficulties in the vicinity of disparity discontinuities. In this case,
disparities for a, b, c and d could be different and, depending on
specifics of the situation, upsampled disparities near discontinu-
ities can be incorrectly initialized from the wrong side of the dis-
continuity (in case of nearest neighbour interpolation) or come
as an average across the discontinuity (in case of Linear or
Gaussian interpolation). In either case, subsequent refinement
often cannot correct for the poor initialization and recovered
surface geometry is compromised near 3D boundaries.

In the example of Fig. 2, assume a 3D discontinuity between a, ¢
and b, d. Point x can belong to either surface and it is impossible to
distinguish between different cases based on the low resolution
disparity map alone. In particular, high-frequency information,
which provides exact discontinuity position, is unavailable at the
coarser levels, and hence accurate reconstruction of depth discon-
tinuities is not possible based solely on the standard upsampling
procedure.
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Fig. 2. Snapshot of the coarse-to-fine (CTF) disparity estimation procedure. White
and orange cells are pixels at the fine level, gray and black pixels are from the coarse
level. Disparity offset for pixel x can be one of disparities at points a, b, ¢ or d (scaled
by 2). Disparity discontinuity is between a, ¢ (gray) and b, d (black) with two
different surfaces shaded white and orange, respectively. Various cases for the exact
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A straightforward solution to overcome such problems is to use
multiple disparity offsets for each fine level pixel so as to encom-
pass all initializations available at neighbouring coarse locations,
rather than a single offset provided by standard upsampling proce-
dures. In essence, such an adaptive procedure would try to find the
best (according to matching metric) coarse disparity value that is
the locally most distant from the 3D boundary, i.e. the points
where disparity estimation is more reliable and less-affected by
low-pass filtering used in the pyramid construction (1).

2.2.2. Adaptation in space and scale

Adaptive windowing, which we refer to as adaptation in space,
has received consideration in stereo matching to avoid aggregation
across surfaces at different depths. However, its appropriate com-
bination with the disparity projection procedure is specific to CTF
refinement and has not been given adequate attention, i.e. adapta-
tion in scale, as discussed in the previous section, is required as
well.

In principle, it is possible to achieve simultaneous space and
scale adaptation by combining any adaptive windows technique,
e.g. [9], with the adaptive offsets as in Section 2.2.1. This entails
additional correspondence search at each finer level for each com-
bination of offset and window configuration, with final disparity
assignment taken as that yielding the best score under the block-
matching metric.

A closer look suggests a more efficient approach. In Fig. 3, dis-
parity for point x is to be refined in the vicinity of various 3D
discontinuity profiles. The red line presents the 3D boundary, the
corresponding optimal, e.g. 3 x 3, aggregation window is shaded
in orange (centered at point y) and the best offset is marked with
a yellow circle. It is seen that the best offset always derives from
the coarse resolution parent of the central pixel of the best win-
dow. This conclusion is supported by intuition that the optimal
window should not cross a 3D boundary, i.e. the centre point of
the optimal matching window does not lie on a 3D discontinuity
and it makes the nearest neighbour upsampling procedure
sufficient.

Thus, the best initialization, match window and refinement for
x are achieved via nearest neighbour upsampling of the coarser dis-
parity map and subsequent selection of the best disparity estimate
derived across all shifted windows that cover x at the finer level.
Importantly, it is not necessary to try all window shifts for all ini-
tializations: Consideration of possible window shifts with coarse
disparity offset taken for the central pixel implicitly encompasses
all possible initializations! Essentially, we extend the observation
of [9] to CTF refinement: “The disparity profile itself drives the
selection of an appropriate window” and disparity offset.

Mathematical formulation capturing the essential notions is as
follows. Using the same notational conventions as in our original
CTF formulations (1)-(3), we begin by constructing image pyra-
mids for the input stereo pair and initializing a corresponding dis-
parity pyramid as specified in formulas (1) and (2). Next, at each
pyramid level, k, an initial disparity map, dispg, is recovered
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Fig. 3. Snapshot of the coarse-to-fine (CTF) disparity estimation procedure adaptive in scale and space for various configurations of depth discontinuity. White and orange
cells are pixels at the fine level, black pixels are from the coarse level. Disparity offset for pixel x can be one of disparities at points a, b, ¢ or d (scaled by 2). 3D boundary is
shown in red and the corresponding optimal 3 x 3 window (with centre point y is as shaded in orange). The correct disparity offset is labeled with yellow circle.
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Fig. 4. Three cases of half-occlusion formation. Shown are top-down views of projection to left and right imaging systems centered at O; and Og, respectively. Bold lines
through points A and B depict imaged foreground and background surfaces, respectively. In all cases point A occludes point B in the left view. (a) Front surface occludes back
surface creating a single half-occlusion region for each view (shaded on the sketch). (b) Narrower front surface creates configuration of multiple occlusions and binocular
visibility regions for back surface. Further interposed surfaces in the red region allow for half-occlusion relations to occur recursively. (c) A narrow hole may leave the observed
background surface binocularly invisible, i.e. left and right cameras see completely disjoint regions of the background. This case is particularly hard for computational stereo,
as disparity of the background surface cannot be detected in principle and no occluder-occluded interrelationship can be stated in terms of disparity per se.

V(x,y)| : dispg(x.y) = 2 - disp""' (x,y)1,
rargmin > p(B(wv), B+ 2 disp™ (x, )1 +di,v)

T (wv)ew(xy)

4)
and associated with a confidence map based on its match scores
confixy) = > p(H(wv), s+ disphx.y),v)). (5)

(uv)ew(xy)

The final disparity estimate at each level, disp®, is adapted by taking
the disparity within the local match window support, w, that has
the highest confidence (lowest match cost)

disp*(x,y) = disp’(‘, (arg min confﬁ(u,v)) (6)
(v)ew(xy)

In practice, the desired shiftable window + offset computations for
each pyramid level can be realized efficiently in two steps:

e (i) obtain an initial disparity map via central window block
matching using Nearest Neighbour upsampled coarse disparity
as offset; and (ii) finalize the disparity map at each pixel by
choosing the disparity of the neighbouring pixel that has best
match score; here, the neighbourhood is that covered by the
match window.

The latter step is similar to morphological operation on the
match score map (erosion for SSD and dilation for NCC match mea-
sures [3]) using the aggregation window as a structural element to
simulate shiftable windows in single-scale matching [2]. Note that
the proposed approach is not identical to estimating disparity esti-
mates at each level via shiftable windows, as proposed in [9,22] ap-
plied at each pyramid level, because, for each pixel, each shifted
window should correspond to a different disparity offset. In the fol-
lowing, we refer to this technique as Adaptive CTF or ACTF.

2.3. Half-occlusions

Half-occlusions, where one view in a pair sees surface points
that are obscured to the other, occur at 3D boundaries and must
be accounted for in accurate reconstruction [3]. Representative
cases of such configurations are shown in Fig. 4. Similarly to its pre-
decessors, i.e. variable window approaches [9-12,20], the ACTF
algorithm has the capability to avoid half-occluded regions by posi-
tioning the support window and choosing the right offset such that
occlusions are covered in the least possible way. Nevertheless, it
does not explicitly detect and label half-occluded regions as such.

To augment the ACTF algorithm to encompass half-occlusions,
we combine disparity and occlusion estimation in a single cooper-
ative scheme that accounts for their mutual dependence, i.e. the

fact that disparity information is needed for reasoning about occlu-
sion and vice versa. In particular, at each resolution the algorithm
recovers initial disparity and half-occlusion maps; however, prior
to refinement, the disparities of background surfaces are extrapo-
lated into the occluded regions of the disparity map. Refinement
is then executed at the next finer resolution, i.e. recovery of in-
creased resolution disparity and half-occlusion maps. This ap-
proach allows interpolated disparity values to guide estimation
at the next level for more precise disparity recovery that, in turn,
supports more accurate recovery of half-occlusions.

The described approach allows the ACTF disparity estimation
procedure to operate essentially as in its original formulation, ex-
cept that half occlusion detection must be performed at each reso-
lution level followed by disparity extrapolation. For half-occlusion
detection, any local method could be employed [3,8]; here, we use
an approach that complements geometric analysis of foreground/
background surface disparities with consideration of match qual-
ity, which is detailed elsewhere (including comparison to alterna-
tives) [21,23] and is briefly documented next. For disparity
extrapolation, we make use of piecewise constancy.

The employed geometric constraint for local half-occlusion
detection derives from conditions under which two 3D scene
points, A and B, both visible in the reference image, I;, occlude
one another in the match image,’ I,. To characterize such situations,
we rely on violations of match uniqueness, as background points are
mapped to the same position as foreground points in the occluded
view [3,13]. In particular, let d(-) and x(-) specify the disparity and
image coordinate along the (rectified) horizontal axis of a 3D point,
then violations of uniqueness are captured as

d(A) + x(A) = d(B) + x(B), (7)

i.e. both x(A) and x(B) map to the same location in the match im-
age. To arbitrate further between visibility and occlusion a second
cue to half-occlusion is employed. Since matches in occluded areas
have no physically defined match (corresponding points are not im-
aged to the other view), any attempted match is expected to be of
low quality, at least for areas having distinctive texture. So, given
two or more points satisfying (7), the point with the best match
score is taken as binocularly visible, and the others as half-occluded.

In practice, straightforward use of uniqueness, (7), is not robust
to slanted surfaces [13] and continuous disparity, as integer dispar-
ity quantization can cause multiple pixels in one image to map to a

1 Since the formulation makes use of points A and B both being visible in one of the
views, the constraint is applicable to all typical half-occlusion regions where a
foreground surface, wide or narrow, occludes a background surface (as in Fig. 4a and
b); however, it is not applicable to binocular viewing through a slit (as in Fig. 4c), as
neither view can see the occluded point, B. Slit viewing is not dealt with explicitly in
the present work; however, empirical results reported in Section 3.2 show that the
approach is reasonably robust to such situations.
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single pixel in the other. We deal with this situation as follows.
Integer disparity values are interpolated to subpixel precision
(e.g. parabola fitting around the match peak [10]). Subsequently,
disparity relations between adjacent pixels on a scanline are used
to group pixels into equivalence classes according to whether or
not they are consistent with a single continuous surface. Given this
grouping: Pixels consistent with a single surface cannot engage in
half-occlusion relationships (violation of uniqueness credited to
disparity quantization issues). The criterion for grouping adjacent
pixels as arising from a single surface is ||Ad| < 1, with Ad the
interpixel disparity difference. This criterion is based on the widely
used occlusion (Ad > 1) and ordering constraints (Ad < —1), as they
both imply depth discontinuities [3,8].

In summary, the half-occlusion detection procedure is as fol-
lows: For each scanline, form the surface equivalence classes by
considering interpixel disparity difference and obtain the sets of
points that violate uniqueness (7). Within each set, find the point
with the best match score and mark all others in the set that are
not in the same surface class as occluded. Given an initial disparity
map calculated at any given level in the ACTF algorithm, this occlu-
sion detection procedure is executed and corresponding regions in
the disparity map are extrapolated from the background surface.
Refinement is then executed at the next resolution.

2.4. Colour segmentation

It is a straightforward matter to augment the proposed ACTF
method with a colour segmentation cue. So far, we have used shift-
able windows of fixed square size based on the intensity driven
match score. Now, the locally best window is chosen based not
on the match score alone, but also on a measure that maximizes
the number of pixels within the support window belonging to
the same surface based on colour uniformity. To achieve this end,
we largely adapt the recently proposed Gestalt-based aggregation
window formulation [12], which constructs window support via
consideration of both colour similarity and geometric pixel prox-
imity. For a point (x,y) in the reference view to be matched, the
colour similarity component is defined in terms of Euclidean dis-
tance across the colour channels, e.g. R(ed), G(reen), B(lue), or
alternative colour spaces like CIE LAB or HSV,

2.(x.y)

= Y VRV —REY)P+(Guv) ~Gx,y)) +(B(u,v)—B(x.y))
(uv)ew(xy)
(8)

with w(x,y) being the aggregation window around the point (x,y).
The geometric proximity component also is defined in terms of
Euclidean distance as

VU=x*+(v-y? 9)

Finally, the colour augmented confidence of match is defined as

Q.’/’(th) =

(u,v)ew(xy)

o B
with ¢(x,y) the match measure (e.g. SSD) computed with respect to
the other view as in (5) and /, o, § weighting parameters.

Of the various colour segmentation formulations available for
stereo matching, we have selected this particular approach for
three main reasons. First, it maps easily to our ACTF estimation
procedure, (5), by taking it as the definition of local match confi-
dence. Second, by incorporating the proximity cue it discourages
break-up of the aggregation window into sets of isolated pixels.
Third, it degrades gracefully as colour becomes less important;
e.g. for operation with gray-level only images, colour similarity,
(8), is simply reduced to p (X, ¥) = > vewpy U V) = 1(x,¥)].

conf(x,y) = 9(x,y) + A(

2.5. Relation to other approaches

In general, it is well known that CTF disparity estimation cor-
rupts 3D boundaries. In non-CTF block matching, use of shiftable
or otherwise adaptive windows to conform to disparity discontinu-
ities is well established [9-12,20]; however, the link to improving
CTF disparity refinement seems not to have been stated previously.
In our formulation, we can use quite small windows for better res-
olution of 3D boundary structure, as larger aggregation is made
intrinsically available by CTF. This allows us to achieve the 3D
boundary fitting robustness of overlapping windows [10], and
avoid complicated construction of variable-sized windows [11].
Interestingly, the modification of shiftable windows used in [2] (re-
ferred there as Min Filter, an efficient implementation of [9]) is a
special case of ACTF when the pyramid is degraded to a single le-
vel: In this case, each point has the same zero offset and ACTF auto-
matically becomes shiftable windows.

It is also of interest to note that recent work that exploits CTF
processing for disparity estimation beyond block matching, e.g.
with global methods [2,4,24-26], has yielded strong results; how-
ever, the importance of considering multiple offsets in projecting
CTF has not been addressed clearly. Ideally, according to Section
2.2, these methods should explicitly try multiple offsets; whereas,
the proposed method is naturally more efficient: Window place-
ment and disparity offset are tied to eliminate extra search.

The idea of using multiple offsets is not entirely new. In over-
lapped pyramid projection strategies they are used to overcome
problems of nearest-neighbour interpolation [27]. Also related is
recent application of CTF to dynamic programming [28], where
minimum and maximum search range maps are eroded and di-
lated, respectively, at each CTF level for improved 3D boundaries.
The use of single, longer search ranges instead of multiple discon-
tinuous short ones is easier to implement in the dynamic program-
ming framework, albeit with increased processing requirements.
However, that work does not discuss multiple offsets, explicitly
motivate their solution as we do or relate their approach to stan-
dard upsampling.

It is important to recognize the deeper problem of discontinuity
pixel recovery as they are a blend of foreground and background
surfaces. One way to ameliorate the attendant difficulties in dis-
parity estimation is to make combined use of block-based and fea-
ture-based stereo, whereby feature-based processing is exploited
to support accurate delineation of discontinuities even as block-
based processing provides dense estimates in the intervening re-
gions [29]. More explicit analysis of how different proportions of
foreground, background and occluded regions within left and right
match windows lead to contaminated match statistics has shown
their ramifications for block-based matching, including foreground
thickening [30]; this analysis led to the use of statistically robust
match measures to combat the corruptions. For pixel-based stereo,
various sample-insensitive measures have been introduced in the
past [31,32] and explicit recovery of foreground and background
mixture proportions has been attempted as well [33,34]. As Section
2.2 discusses, the problem is more serious for pyramid-based CTF
methods as blur over relatively large spatial extent occurs. In this
light, adaptive local aggregation would implicitly allow grouping
of surfaces separated in depth. In fact, it will be shown in Section
3 that adaptivity in scale and space is beneficial even for global
CTF stereo methods that theoretically do not require such
aggregation.

The proposed approach to detecting half-occlusions emphasizes
their processing within a CTF framework, a topic that appears to
have received little previous consideration. Within this framework,
we use two complementary sources of information to drive the
processing. One source of information derives from explicit consid-
eration of disparity relationships between occluded and occluding
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surfaces, e.g. as previously considered in terms of the occlusion
[8,15], ordering [2,3,8] and visibility (an extension of uniqueness)
[14,16] constraints. Indeed, our statement and use of the unique-
ness constraint (7) also can be used to define the “forbidden zone”
where match ordering is violated [35]. Moreover, our use of dispar-
ity equivalence classes that do not compete with one another un-
der uniqueness as they are credited to a single continuous
surface, is related to previous notions of disparity component
matching, which relies on the assumption that images consist of
connected sets of pixels with the same [36] or very similar [37] dis-
parities. The other source of information that we employ derives
from consideration of match quality, e.g. as previously considered
when global methods set occlusion cost to depend on match scores
[2,3] and inconsistent bidirectional matches (left-right checks) are
used for occlusion detection [8,10]. While these two sources of
information have been extensively researched with regard to
half-occlusions, it appears that the particular combination that
we employ and especially their cooperative CTF instantiation with
disparity estimation is novel. In comparison to CTF use of left-
right-checking, our proposed method yields superior results
[21,23].

Finally, a number of state-of-the-art stereo correspondence

define match support [12,15,16]. Here, we largely incorporate a
previous approach that maps easily to our adaptive CTF framework
and provides it with the ability to guide match widow support
according to colour uniformity [12,21]. Here, colour segmentation
can guide match support, yet, is robust to situations when colour
segmentation fails, e.g. highly-textured regions, as aggregation
windows will not degenerate to constellations of disjoint pixels.
In contrast to the original Gestalt-based colour-guided aggregation
[12], which uses colour to guide construction of otherwise arbi-
trary pixel groupings, our formulation merely uses colour similar-
ity to guide adaptive block matching.

3. Empirical evaluation
3.1. Experimental methodology

The adaptive CTF processing advances have been implemented
in software and tested on a standard test set Tsukuba, Venus, Teddy
and Cones [38] shown in Fig. 5 and a dataset with naturalistic imag-
ery (albeit no ground truth), Flower Garden [39], Rock [40], Stephen1
and Stephen2 shown in Fig. 6 (Stephen images are novel stereo

pairs). Overall, six different algorithmic instantiations are
algorithms use colour segmentation in a hard or soft manner to evaluated:
Tsukuba Venus Teddy Cones

Left

GT

Fig. 5. Lab scenes from the Middlebury database [38]. From top to bottom: left image, disparity ground truth with half-occlusions. Disparity and occlusion ground truth are
given with respect to left image. In disparity GT, brighter pixels mean larger disparity; in occlusion GT, red pixels denote half-occlusions.

Fig. 6. Real world scenes: Flower Garden (FG); Rock; Stephen1; Stephen2.
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Algorithm Properties

Al Standard CTF

A2 Proposed ACTF

A3 A2 with occlusion detection

A4 A3 with colour-guided windows
A5 Single scale with shiftable windows
A6 Gestalt-based matcher [12] in CTF

Our major comparison is to A1 to show our improvements over
standard CTF. All algorithms work on a Gaussian pyramid obtained
from grayscale images (A5 works on the finest level only) and use
the Normalized Cross-Correlation (NCC) match measure [3]; for
match windows, A5 uses 17 x 17 shiftable windows (which gave
the best result in initial tests), A1-A4 use 5 x 5 windows and work
over all attainable pyramid levels for a given image size (i.e. coars-
est level auto-selected when one image dimension becomes unity)

and search +1 pixel at each level; A5 searched the maximum dis-
parity range for each test case. Note that parameters for CTF
instantiations are selected based on theoretical considerations.
The top pyramid level is the maximum that can be computed;
search range is the smallest possible; 5x5 match windows are
matched to the support in the standard kernel used in pyramid
construction, (1/16%)[1 4 6 4 1]'[1 4 6 4 1]

We also compare CTF matchers A1-A4 to A5, as it is a strong
single scale block matcher [2]. Additionally, comparison to A5
shows the benefits of CTF itself, because A5 can be seen as a special
case of A2 where the pyramid is degenerated to a single level with
maximum disparity search range. Moreover, we include a version
of the adaptive support-weight approach [12] that is based on
Gestalt principles but implemented in coarse-to-fine fashion (with
adaptive offsets as described in Section 2.2.1) as A6. The original
stereo matcher [12] is widely recognized as one of the best local
matchers to date (exceptions outlined in Section 3.2) and
comparison to this instance will exemplify the importance of CTF

Tsukuba

A2 |

A3

Ad

Teddy

Cones

A6

Fig. 7. Middlebury scenes disparity maps of algorithms A1-A6. Half-occlusions detected in A3 and A4 are extrapolated for disparity error analysis by taking disparity value

from the background (occluded) surface.
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Fig. 8. Error statistics across algorithms A1-A®6. Triplet bars represents error statistics for non-occluded (black), all (gray), and discontinuity (white) pixels, as defined in [38].

processing considerations raised in Section 2.2. Instantiation A6
uses *1 pixel search range at each pyramid level and all other
parameters are the same as in [12].2 Recall that while [12] and A6
use colour to construct match windows support, the proposed
approach, A4, uses colour only to weight pixel contributions during
square window adaptation (6).

For data sets with ground truth, three kinds of error statistics
have been collected [38]: errors for nonoccluded pixels, all pixels
including occluded and pixels near discontinuities. Average statis-
tics for each class of errors are given by taking the weighted aver-
age over all four stereo pairs, with weights proportional to the
number of image pixels. Fig. 7 shows disparity maps while Fig. 8
shows the error statistics. Fig. 9 shows the disparity maps for real
world images.

3.2. Adaptive CTF processing

Comparing A1 and A2, the introduction of the proposed ACTF
processing results in considerable improvement. It is expected that
the adaptive approach bests standard CTF, as it was designed for
exactly that purpose. Interestingly, ACTF also bests single scale
shiftable windows (A5), especially near discontinuities (white bars
in Fig. 8 and qualitative improvement in real scenes, especially
crispness of 3D boundaries in Stephenl and Stephen2); this can be
explained by the fact that A2 can use smaller windows (5 x 5 vs.
17 x 17) to yield more precise boundary-fitting and search over
small ranges (i.e. 1 at each resolution) for less ambiguous
matches.

Nevertheless, ACTF (A2) cannot completely eliminate all disad-
vantages of CTF processing. For example, thin structures are still
hard to recover precisely, e.g. lamp arms in Tsukuba and pencils
in Cones; however, use of small windows results in better recov-
ery of depth discontinuities that in non-CTF A5. Another apparent
weakness of the CTF processing is the possible image border ef-
fect (disparity for the lower region on Teddy, region above the

2 The original formulation of [12] calculates the match cost of a pixel by performing
straight absolute colour difference for pixels in the aggregation neighbourhood
(weighted by the colour similarity with the central pixel). For real stereo pairs that
have significant radiometric differences, we calculate this matching cost contribution
on band-passed images (Laplacian pyramid), while adaptive constructions of the
support, i.e. weights, are still computed on full colour images (Gaussian pyramid).

head in Stephenl and the whole upper-right corner of Rock are
recovered incorrectly), when thin regions near image boundaries
do not have enough spatial support and become lost at coarser
scales.

The explicit consideration of the half-occlusion information
(A3) shows even further improvement over ACTF (A2) alone by
reducing errors in half-occluded regions, as expected, and, more
generally, near 3D discontinuities (gray and white bars in Fig. 8,
respectively). These results support the importance of the explicit
occlusion refinement and the necessity of cooperation between
disparity estimation and the half-occlusion detection in the CTF
procedure. The benefit of half-occlusion detection is most evident
when large disparity jumps are considered, especially in the real
scenes (Rock, Stephen1 and Stephen2), but also in the lab settings
(Teddy, Cones). Interestingly, the developed approach also exhibits
reasonable robustness to binocular slit viewing, as shown by the
generally correct disparity estimates in the vicinity of the back-
ground lattice work in Cones. Here, even though the occlusion
detection based on the disparity cue (7) is not always possible
(background surface usually assigned the disparity of the fore-
ground), neighbouring visible points are still assigned correctly,
as local errors are not propagated. Still, it is worth noting that
the major improvement of A3 over Al is due to the adaptive win-
dow and offset approach (A2). See [21,23] for further related half-
occlusion experiments.

The introduction of the colour-guided component in ACTF (A4)
results in further improvement, specifically for Middlebury scenes.
The set of parameters producing the best result has been chosen as
o=5and g =175 (as in [12]) and 4 = 2 x 10~%. Surprisingly, no
visible gain of colour/intensity segmentation cue is observed for
the natural scenes (Fig. 9). These results are explained by the fact
that the most useful information, especially in outdoor scenes,
are coming from texture, rather than drastic change in intensity
profile. Colourful homogeneous objects are much more common
in the lab scenes exemplified in the latest Middlebury dataset. A
drastic counter-example, is the Map stereo pair from the old Mid-
dlebury dataset [38] shown in Fig. 10. This example is particularly
easy for adaptive block-based matchers like our approach. At the
same time, algorithms that rely too heavily on monocular colour
segmentation, including the instantiation of [12] considered here,
perform poorly in such situations [12,16,38], even though they
are fundamental to multi-image matching.
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FG Rock Stephenl Stephen2

Fig. 9. Disparity recovered for real scenes using algorithms A1-A6.

Disparity GT Disparity of [12] |Disparity of ACTF (A4)

Left Tmage
S,

Fig. 10. Colour cue difficulties. From left to right: left image of Map dataset from the old version of [38]; Disparity ground truth; disparity recovered by the adaptive weight
approach [12] (adapted from [38]); disparity map recovered by the ACTF.

Interestingly, ACTF (A4) exhibits superior performance to the that is embodied in A4 to combat the 3D boundary errors that
CTF version of the adaptive support-weight approach [12], i.e. A6, are propagated during CTF processing. Still, A6 behaves better in
in real scenes and even in the majority of colourful lab scenes. This the textureless regions because of its large window size. Finally,
fact supports the necessity of joint adaptation in scale and space the approach of [12] and even its CTF version A6, though being
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local, are significantly more computationally intensive than the
simpler block-based engine of A2-A4, which is a practically
important consideration for this class of algorithms.

Finally, the running times of these local algorithms summed
across all four Middlebury image pairs are presented below:

Algorithm Al A2 A3 A4 A5
0.989 1.193 1.246 2.851 14.636

Time (s)

The adaptive method (A2) adds a very modest extra burden to
the basic CTF processing (A1); at the same time, the disparity re-
sults are improved significantly, as documented above. Half-occlu-
sion processing (A3) increases the processing time even less in
comparison to (A2). The introduction of the colour segmentation
in (A4) is more computationally involved in comparison to basic
shiftable windows and offsets method of A2 and A3, but even in
this case the algorithm is only twice slower than A3, as it has the
same computational complexity. Finally, all CTF algorithms (A1-
A4) are an order of magnitude faster than the single-scale counter-
part A5, because the latter is an algorithm of well-known higher
computational complexity. Formal complexity analysis is consid-
ered further in Sections 3.4 and 4.2.1.

3.3. CTF global stereo

Though the major effort of the current work was devoted to effi-
cient block-based CTF matching, the proposed advances are also
beneficial for global methods formulated in CTF fashion. As an
illustrative example, the well-known Graph Cuts stereo matcher
with occlusion detection [13] is considered; its performance re-
sults are shown when implemented in CTF with and without adap-
tive offsets and windows.

Algorithm Properties

G1 GC CTF with NN disparity upsampling

G2 GC CTF with adaptive offsets

G3 GC ACTF with adaptive 3 x 3 windows and offsets
G4 Original single-scale GC

Similarly to Section 3.1, we consider the algorithmic instantia-
tions G1-G4 outlined above and test them on the Middlebury data-
set. For G1, G2 and G4 the sample-insensitive measure [31] is used,
as it is essential to reduce the CTF boundary blurring phenomenon
discussed in Section 2.2; for G3, SAD is used as 3 x 3 adaptive win-
dows serve to combat boundary degradation. CTF instantiations
G1-G3 are computed with Ad = 1 search range. All other parame-
ters related to the GC computation are kept the same for all algo-
rithms G1-G4.

Figure 11 shows the obtained maps, while Fig. 12 shows the
corresponding error statistics. As expected, qualitatively and quan-
titatively, the use of multiple offsets (G2) is superior to standard
NN upsampling (G1). However, introduction of small adaptive
aggregation windows (G3) produce even better results in compar-
ison to pixel-based matching especially near 3D discontinuities,
which supports the claims made in Section 2 regarding the superi-
ority of simultaneous adaptation in scale and space. In general, G3
yields 3D boundary outline quality similar to the traditional single-
scale version (G4) and produces fewer spurious matches. The only
apparent disadvantage of G3 in comparison to G4 is the inferior
performance near thin structures (e.g. pencils in Cones), which is
a standard flaw of CTF processing that requires further enhance-
ments for significant improvements. Importantly, progress has

been made improving CTF recovery of thin structures by exploiting
novel image pyramid representations [41].

Finally, the running times of these global algorithms summed
across all four Middlebury image pairs are presented below:

Algorithm G1 G2 G3 G4
Time (s) 76 78 77 259

As expected, the difference between CTF (G1-G3) and single-
scale (G4) versions is the most substantial, as CTF versions, having
fundamentally lower complexity, run only a fraction of the time
needed to process the full disparity space. At the same time, the per-
formance of the proposed adaptive CTF processing (G3) adds little
computation burden? to the standard G1, but significantly improves
the results (as discussed above). Interestingly, G3 with adaptive off-
sets and windows is also slightly faster than G2 with adaptive offsets
only, which is explained by the efficient implementation of ACTF pro-
cedure (embedded in G3), as detailed in Section 2.2.2.

3.4. Variation of parameters

The results shown in Figs. 7 and 9 were obtained using the set of
parameters theoretically motivated in Section 3.1: +1 local search
range, full pyramid, 5 x 5 aggregation windows. Here, we investi-
gate the behaviour of the ACTF algorithm (A4) while varying those
parameters. In particular, we show in Fig. 13 the quantitative re-
sults of varying window size, local disparity search range, match
measure and parameters for the colour cue averaged over the four
scenes in the Middlebury dataset. Experimentally, no significant
variation in performance is noticed. Specifically, increasing the
window size has the predicted behaviour of increasing errors near
discontinuities, while not reducing overall error, because the CTF
procedure intrinsically allows greater aggregation on coarse lev-
els.* Increasing the local search range also shows the well-under-
stood tendency of reducing discontinuity errors (CTF is becoming
more robust in recovering finer details), while increasing the overall
error rating (due to increasing danger of converging to a false
match). The choice of the correct match measure is usually guided
by properties of the sensor that acquires the data: in our case NCC
is superior to SSD (using Laplacian pyramid to ameliorate the need
for normalization) and Mutual Information (MI) (the MI-matching
is similar to the procedure described in [42]; details are provided
in [21]). Finally, choosing a reasonable parameter for colour segmen-
tation, 4, is not difficult, as its performance varies predictably: errors
are higher if the colour cue is weighted too little (small 1) or too
much (large 4).> Overall, the algorithm is very stable with respect
to the theoretically motivated choice of parameter values, which also
yield the best overall results.

3.5. Final remarks

The critical comparison is that of A4 to standard CTF (A1), as a
major goal of the present work is improved disparity estimates

3 The difference in runtimes between G3 and G1 is much less noticeable than in
comparison of local matchers A2 and A1 (see Section 3.2), since the running time is
dominated by the graph cuts computation.

4 Note that windows of size 3 x 3 perform unsatisfactory because support is too
small for a local winner-take-all procedure. More importantly, they are smaller than
the size of the Gaussian kernel 5 x 5 and, even in theory, cannot overcome the
possible boundary overreach of the intrinsic aggregation.

5 The parameter 4 is argued as of primary importance as it directly controls the
strength of the colour cue in the adaptive CTF matching, while « and g control the
proportion between colour similarity and proximity components. Refer to [12] for
discussion of variation in o and p.
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Fig. 11. Middlebury scenes disparity maps of algorithms G1-G4. Red pixels denote half-occlusions.
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Fig. 12. Error statistics across algorithms G1-G4. Triplet bars represents error statistics for non-occluded (black), all (gray), and discontinuity (white) pixels, as defined in
[38].

for this style of efficient processing; such improvement is clear in
Figs. 7 and 9, e.g. average errors reduced by a factor of two or more
for all error classes plotted in Fig. 8 and dramatic qualitative
improvement in the images of real scenes.

Finally, speed is an important advantage of any CTF algorithm
including the proposed algorithm. For an image of n pixels, search
range d and match window size w?, the theoretical complexity is

omdw?) + 0(jaw?) + 0(Tedw?) - <3 %}"’2)
i=0
_ O(ndw?)
__i_:_T7Z._.0(ndmﬂ), (11)

which in our case reduces to O(nw?), because search range at each
pyramid level is d = 1 for A2-A4 in all reported experiments, and
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Fig. 13. Error statistics for various parameter variations. Triplet bars represents
error statistics for non-occluded (black), all (gray), and discontinuity (white) pixels,
as defined in [38].

can be decreased to O(n) via a running box filter implementation for
window cost aggregation [25,28]. Importantly, the advances over
standard CTF that are embodied in ACTF do not degrade this com-
plexity (e.g. implementation of shiftable windows as in [2] via mor-
phological operation).

The runtimes documented in Sections 3.2 and 3.3 are reported
for the current implementation realized in unoptimized C++ with-
out any special instructions on a 3.0 GHz P4. As another example,
matching of 1024 x 768 images (Stephen1 and Stephen2) with A4
takes only 0.781 s, vs. 24.73 s needed to execute the single-scale
A5 (note that larger images have inherently larger disparity search
range, which explains the growing gap between running times of
A4 and A5, as they are of different computational complexities).
Since the developed approach is consistent with the CTF, block-
matching framework, there is great potential for improved soft-
ware runtimes and real-time performance, when mapped to
appropriate processing architecture and/or hardware. Neverthe-
less, our work has been concentrated not on fast implementation
of the coarse-to-fine algorithm, but rather on analysis and
improvement of its accuracy, while preserving its inherently low
complexity.

4. Discussion
4.1. 3D boundary recovery within the CTF framework

This paper has presented extensive analysis of CTF stereo pro-
cessing with special emphasis on local, block-based matching. As
results of this analysis, the main sources of error are identified -
a well-known foreground fattening/shrinking artifact of block-
based matching [10,43] and the propagation of incorrect disparity
estimates near 3D boundaries during coarse-to-fine projection.
Further, the analysis has led to a novel combination of adaptive
windows and adaptive offsets (adaptation in space and scale),
which has empirically shown significant improvement over stan-
dard CTF block matching stereo and single-scale stereo matching
with shiftable windows [2], especially in the vicinity of 3D bound-
aries. While the proposed ACTF procedure is simple and straight-
forward, the extant literature does not provide a similar analysis
of coarse-to-fine processing nor document a corresponding
algorithm.

The half-occlusion phenomenon is one of the toughest sources
of error for computational stereo [3,8]. In response, we formulate

matters as a cooperative process that interleaves disparity and
half-occlusion estimation across coarse-to-fine refinement. Even
though the ACTF scheme itself (Section 2.2.2) is robust in the vicin-
ity of half-occlusions, an explicit treatment of such regions is
shown to yield extra benefit, which is documented extensively.
Significantly, we find that our approach is of particular benefit in
the processing of real world scenes, as shown in Fig. 9.

The disparity produced by our algorithm can be exploited di-
rectly, or can be used to provide input to more computationally
intensive estimators that can benefit from reliable initial estimates,
e.g. various global optimization procedures. Moreover, the pre-
sented analyses and techniques can be adapted and incorporated
into other CTF disparity estimators, both local and global, as well
as extended to optical flow recovery.

4.2. Speed-accuracy tradeoff

A major motivation for the present work is to improve speed-
accuracy tradeoffs in computational stereo; correspondingly, we
now explicitly compare our proposed algorithm to various alterna-
tives along these dimensions. To quantify accuracy, we follow cur-
rent practice and rely on error percentage [2,44,45], e.g. percentage
of pixels in the image where recovered disparity value differs by
more than 1 from the ground truth. To quantify speed, we chose
computational and memory complexity. These complexity mea-
sures are independent of implementation details, which is appro-
priate given that the algorithms must be optimized differently
and may be implemented by different researchers. Note, however,
that complexity is not a sufficient measure of performance, as var-
ious computations can be run in parallel, which would significantly
lower the final processing time - an issue that we address
subsequently.

In the remainder of this section, analysis will focus on corre-
spondence procedures that rely on image intensity-based match-
ing. While some recent matchers employ various additional
sources of information (e.g. colour) and/or postprocessing (e.g.
plane-fitting), the methods discussed could be augmented to ex-
ploit such information as appropriate (e.g. as we discussed with re-
spect to colour and our own approach in Section 2.4), with
additional computational cost. We also neglect tree-reweighted
message passing [46], as it is not yet widely used, while its perfor-
mance is rather similar to graph cuts and implementations are
slower [45].

4.2.1. Time complexity

Representative algorithms and their time complexities are out-
lined in Table 1. The complexity itself is expressed in n (number of
pixels), d (disparity levels), k (number of iterations), m (number of
processed disparity candidates). Brief explanations follow.

e The proposed ACTF: Section 3 derived the complexity as O(n).

e Conventional block-matching with shiftable windows (Block-
SW) as in [2]: Its complexity is trivially O(nd), because it makes
a single pass over the whole disparity image space (DSI).

Table 1
Major stereo algorithms and their complexity.

Algorithm Complexity (reported) Complexity (adapted)
ACTF 0(n) O(N?)

Block-SW 0(nd) [2] O(N?)

DP 0(nd) [42] O(N?)

BP 0(ndk) [4] O(N?) : O(N*)

GC o(n'2d'?) : om3d®) [3] O(N*7) : O(N°)

GCocc o(n'2d*?) : 0(n*d’) O(N*®) : O(N')

SG 0(nm) [52] O(N?) : O(N?)
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Fig. 14. Time complexity-accuracy tradeoff of major dense stereo algorithms. Plot shows the order of complexity (logy%) on abscissa vs. percentage of erroneous pixels on
the ordinate for three classes of errors: (a) Nonoccluded pixels. (b) All, including occluded. (c) Pixels near discontinuities. The proposed algorithm (ACTF) is marked with
asterisks and lies to the lower left side of the region formed by other basic dense stereo algorithms (marked with squares with initials defined in Table 1), which shows the
outstanding speed-accuracy tradeoff characteristics of ACTF. Seed growing algorithms (marked with triangles and initials SGs vs. SGd for relatively sparse (65-70%) and
somewhat denser (85-90%) estimates, respectively) also yield good speed-accuracy tradeoffs, but do so at the expense of density, as they typically produce only sparse

disparity estimates.

e Dynamic programming (DP) as in [2]: The naive implementation
of DP is O(nd*) but only O(nd) when the distance transform is
used [4].

o Belief Propagation (BP) as in [47]: The original BP for stereo is
O(ndzk) [48], but is reducible to O(ndk) by application of a dis-
tance transform [4].

e Graph Cuts (GCs) as in [49]: The worst-case complexity of GC is
quite poor, and depending on the algorithm can be, for example,
O(Vertex x Edges®) = O(nd(nd)*) = O(n3d?) if push-relabel maxi-
mum flow algorithm is adopted [50]. In turn, the average com-
plexity is harder to predict; some authors observed close to
linear dependence on n and d [50]; we take apparently the tight-
est result reported in the computer vision literature, O(n'2d"?)
[3,51].

e Graph Cuts with occlusions (GCocc) as in [13]: The complexity of
GCocc is slightly higher than of GC as a graph with more connec-
tions has to be solved. More specifically, we consider the worst-
case complexity as O(Vertex x Edges®) = O(nd(nd?)?) = O(n3d”)
and expected as O n”dla%g = 0o(n'2d*?).

e Seed growing (SG) as in [52] (the latest advancement of typical
representatives [53,54]). Unlike the other algorithms consid-
ered, which return dense estimates of disparity, seed growing
methods tend to return sparser estimates. This class of algo-
rithms propagates the disparity map from initially computed
seed points that typically are taken at loci of distinctive features
(e.g. corners [55]) and consider only a small set of disparities, m,
out of the possible range, d. Complexity is thus O(nm).

To rank the algorithms based on complexity, it is desirable to
express the complexity measurement in terms of a single variable,
horizontal image size N. To do so, we recast O(n),0(d) and O(k) in
terms of O(N). First, we assume that our images have a standard
height/width ratio, and the width should be of the same order N
as the height, which would make the number of image pixels
n = O(N?). Second, the number of possible disparity values d is
smaller than the horizontal image size, but it is clear that it is pro-
portional to the size of the image and we can assume that it de-
pends linearly on N. Thus, d = O(N). Belief propagation is an
iterative algorithm® and the number of iterations k depends on
the nature of the scene. It can be few iterations when the environ-
ment is highly textured, or on the order of O(N), if there are large

5 Graph cuts for stereo is iterative too, but few iterations are required, e.g. two or
three [13,49].

textureless regions and the information from structured regions
has to be propagated over large image areas. Moreover, the iterations
are dependent on the message update schedule, e.g. hierarchical be-
lief propagation can yield constant overhead iterations [4]. Thus, the
impact of iterations can range from constant overhead to the order of
image size, i.e. k € [0(1), O(N)]. Finally, the complexity of the seed
growing method is O(mN?). The actual m will largely depend on
the complexity of the scene and might even be proportional to d;
typically, it is relatively small and is regarded as a constant,’ as dis-
cussed in [52]. Thus, we consider the complexity of the algorithm as
the range O(N?) : O(N?).

The adapted complexity functions, %, in terms of argument N
are shown in the third column of Table 1. Fig. 14 shows the plot
of complexity vs. performance for the major computational algo-
rithms considered. Note that the abscissa has a logarithmic scale.
The performance is measured in terms of error percentage, and
we have used the numbers reported by authors directly either in
the corresponding papers or in the benchmark website [38], with
one exception. The exception is for the case of seed growing, where
it appears that quantitative results have not been reported on a
standard data set. To fill this void, a publically available algorith-
mic instantiation of [52] has been executed on the test images
shown in Fig. 5. Since this algorithm returns variable densities of
disparity, results are reported at two different settings with a
resulting trade-off in density vs. accuracy.®

In Fig. 14, algorithms that are closer to the origin are desirable
as they provide accurate results at a reasonable expense (low error
rates with low computational complexity). Analyzing Fig. 14, all
standard algorithms (marked with squares) exhibit a consistent
tendency of better performance (lower error rates) at the expense
of higher computational complexity. The proposed ACTF (marked
with asterisk) lies to the lower left side of the cloud of standard
algorithms, which signals its strong combination of low error rate
and very low complexity. Of the algorithms considered, seed grow-
ing provides the only direct competition to ACTF in terms of speed-
accuracy trade-off. Indeed, in certain situations, e.g. errors at non-
occluded and across all pixels at low density, it can yield superior

7 The actual complexity also depends on the particular implementation and data
structures in use - the implementation of sparse disparity spaces using binary search
trees for each reference point makes the complexity O(nmlogm) [52,53].

8 Density in the employed seed growing algorithm depends on a correlation
growing threshold, which arbitrates whether a local match is propagated according to
its correlation value (i.e. parameter 7 in [52]).
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accuracy at comparable complexity. Significantly, however, these
results come at the expense of density. In particular, the densities
of the more accurate SGs are only 65.07%, 70.62% and 68.78% for
nonoccluded, all and near-discontinuity points, respectively. The
corresponding numbers for denser, albeit inferior accuracy, SGd
are 91.0%, 84.6% and 85.21%. Given the present emphasis on effi-
cient computation with accurate 3D boundaries, it is especially
interesting to note that the denser version of seed growing (SGd)
still only provides approximately 85% density near discontinuities;
whereas, the proposed ACTF provides notably improved accuracy
near discontinuities with maximally dense (100%) estimates.
Moreover, while the theoretical complexity of ACTF and seed
growing is comparable, ACTF enjoys the advantage of a simpler
practical design and implementation as it does not rely on hetero-
geneous two-stage matching (i.e. seed matching followed by
match propagation), which should yield increased practical effi-
ciency for ACTF, less dependence on parameters and easier map-
ping onto parallel hardware.

4.2.2. Memory complexity

All single-scale algorithms, including the ones shown in the plot
of Fig. 14, except seed growing methods, require the construction
of the entire disparity image space (DSI) [2], which means that they
have at least O(nd) = O(N*) memory complexity to store the DSI
and operate on it.° In comparison, pyramid-based CTF approaches,
as the one presented here, require only O(n) = O(N?) space because
CTF does not construct the complete DSI. Seed growing methods also
are reported to maintain O(N?) complexity [52,53].

4.2.3. Parallelization

The analysis of computational complexity and performance is
usefully complemented by discussion of the degree to which com-
putations can be parallelized. Parallelization results in much more
efficient utilization of hardware capabilities and ultimately allows
faster and, in certain cases, real-time processing. Of related interest
are recent efforts in realizing stereo computations on commodity
graphics hardware (see, e.g. [56] and references cited therein)
and FPGAs [57].

For stereo, block-based matching is readily parallelized as it is
local, and the presented CTF block-based matching procedure
naturally possesses this property too. The complication of the
coarse-to-fine scheme is that it is sequential in scale processing.
Nevertheless, the parallelization is very efficient because the
number of scales is logarithmic with respect to the image size.
Further, pipeline architectures are well suited to CTF processing,
and existing systems already provide real-time performance [7].
In contrast, the DP approaches, though also possessing relatively
low theoretical complexity, are parallelizable only up to a scanline
(or corresponding assumed Markov Chain). For the case of
BP-based approaches, the messages in a single iteration can be
computed in parallel (the message computation is a local opera-
tion), but they depend on the previous iteration. Nevertheless, DP
and BP can yield real-time performance using graphics hardware
(together with the CPU working in parallel), albeit on rather small
images and coarsely quantized disparity (320 x 256 with 16
disparity levels) [56,58].

4.3. Parameter tuning
Most recent algorithms employ rather complex models of dis-

parity maps with occlusions, colour segmentation, plane fitting,
etc. All these require the introduction of various parameters, the

9 Note that the naive implementation of the block-based matching algorithm can
be O(n) in space, though at the expense of numerous redundant computations.

majority of which are free and ultimately hand-tuned.!® Even basic
global formulations require certain intrinsic parameters to be speci-
fied: smoothness cost for prior, parameter value for robust datacost
(e.g. threshold for truncated basic match measures) and occlusion
cost, if there are occlusions in the formulation. Moreover, the same
parameter values typically are incapable of producing uniformly
superior solutions for all datasets.

In contrast, the proposed ACTF algorithm has virtually no
parameters to tune. Window size, which is typically the major
and critical choice for stereo algorithms, is kept small (5 x 5) to al-
low precise boundary localization, while greater support aggrega-
tion is available by using coarser resolutions. The ability of ACTF
to recover from errors made at the coarser levels, allows it to use
the full pyramid, which, in turn, allows for restriction to the small-
est search range +1 for the fastest search and least ambiguous
matching. Moreover, this specification was able to produce the
best results for both lab and real world scenes, datasets with
widely varying characteristics.

5. Conclusion

Standard coarse-to-fine, block-matching algorithms form the
basis of the most resource efficient stereo correspondence ap-
proaches; however, traditionally such methods have been ham-
pered by poor performance in the vicinity of 3D boundaries. In
response this state of affairs, this paper has presented simple,
effective procedures for improving disparity estimates near 3D
boundaries within the coarse-to-fine (CTF), block-matching para-
digm. The procedures entail adaptive CTF refinement that avoids
corruption of disparities across 3D discontinuities and accurate
half-occlusion recovery. Empirical evaluation of an embodiment
of these advances in a CTF, block-matcher shows its superior per-
formance in comparison to the same matcher without the pro-
posed advances. Significantly, the enhanced disparity estimator
enjoys the same efficient style of computation as does standard
CTF, block-matching. Furthermore, we have demonstrated the use-
fulness of the proposed advances when embedded in global CTF
matchers (graph cuts with occlusions [13]). In practice, the pro-
posed advances should have considerable utility owing to their
efficient, effective nature, small number of parameters and applica-
bility to any CTF matcher.
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