
Unified Target Detection and Tracking Using Motion Coherence

Markus Enzweiler∗ 1,2 Richard P. Wildes 1 Rainer Herpers 1,2

1 Dept. of Computer Science, York University, Toronto, ON, Canada, M3J 1P3
2 Dept. of Comp. Sci., Bonn-Rhein-Sieg Univ. of Applied Sciences, D-53757 St. Augustin, Germany

{menz, wildes, herpers}@cs.yorku.ca

Abstract

This paper presents a unified approach to adaptive target
detection and tracking. The unifying concept is “coherent
motion energy”, a measure of the extent to which a single
motion dominates local spatiotemporal structure. There are
three major components to the approach. First, a multires-
olution analysis of coherent motion energy is used to detect
salient dynamic targets. Second, a robust affine transfor-
mation estimator is used to recover frame-to-frame target
motion across regions of interest defined by coherent mo-
tion. Third, a method of template adaptation based on co-
herent motion weighted goodness of match is used to drive
automatic template update. Empirical evaluation of the ap-
proach shows the contribution of the various components
and documents strong performance of the integrated whole.

1. Introduction

The perception and interpretation of motion provides a
basic mechanism for guiding action. While humans are
good at detecting and tracking targets from moving back-
grounds, machine vision approaches usually provide satis-
factory results only under well-defined assumptions. The
detection and tracking of biological targets is particularly
challenging, as natural shapes change non-rigidly over time.

The problem of recovering the motion of potential tar-
gets from image sequences has been widely addressed
[4, 22]. General approaches to estimating target trajecto-
ries have been both token (e.g., [16, 24, 25]) and area (e.g.,
[2, 9, 18]) based. Geometric deformation of tracked regions
has been addressed to allow for a degree of 2D non-rigidity
(e.g., [10, 19, 26]). Other work has computed motion pa-
rameters for connected components of points, supported by
geometric and kinematic filtering [21]. Recently, several
additional lines of research have been concerned with non-
rigid 3D shape recovery and tracking [7, 27, 30]. Still other

∗Currently at the Faculty of Comp. Sci., University of Ulm, D-89069
Ulm, Germany, markus.enzweiler@informatik.uni-ulm.de.

work has concentrated on adaptive techniques to accommo-
date template variation across time [12, 17, 20].

Most closely related to the current contribution is pre-
vious work that has employed spatiotemporal, directionally
selective filters to detect salient targets of interest [1, 28].
Especially in terms of disregarding a scintillating or oscil-
lating background, such techniques have proven to be more
efficient than change detection based on temporal differ-
ences [28]. Such filters also have been applied to make
qualitative distinctions between different patterns of motion
in terms of oriented energy signatures [29]. Of particular
interest in the current work is the energy signature of co-
herent motion, where a single trajectory dominates a local
region in space-time, as a cue to detect potential targets.

In the light of previous research, the main contributions
of the current approach are as follows. A novel adaptive
algorithm to detect and track multiple, non-rigidly moving
objects over time is presented. There are three components
to the algorithm. (i) A measure of coherent motion is used
to detect dynamic targets. (ii) A robust affine transforma-
tion estimator is used to recover frame-to-frame target mo-
tion across coherent motion defined regions of interest. (iii)
An adaptive method, based on coherent motion weighted
goodness of match, is used to drive template update. A sys-
tematic empirical evaluation quantitatively documents the
contribution of each of the algorithm’s components. While
components of the described approach have been consid-
ered in previous research, their unified synthesis via a mea-
sure of coherent motion is novel as is the empirical delin-
eation of how each component contributes to the whole.
Further, in contrast to most extant approaches, the proposed
approach supports both automatic initialization (detection)
and generation of correspondences (tracking) within a sin-
gle framework.

2. Technical approach

2.1. Coherent motion energy

In general, the motion of non-rigid objects in image se-
quences results from the projection of the three-dimensional
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object motion onto the two-dimensional image plane. Un-
der the assumption that natural targets exhibit a certain pat-
tern of texture, coherent motion (i.e., translation) generates
locally linear structure in the spatiotemporal domain. To de-
tect such spatiotemporal gradients, an oriented energy rep-
resentation of the image sequence is used, as follows [1, 29].

Measures of oriented energy, ER, EL, EU , ED, cor-
responding to rightward, leftward, upward and downward
motion are extracted by pointwise rectification and summa-
tion of the responses of a quadrature pair of orientation se-
lective bandpass filters at four orientations along spatiotem-
poral diagonals indicative of rightward, leftward, upward
and downward motion. Here, a filter pair consisting of
broadly tuned separable and steerable filters based on the
3D second derivative of a Gaussian, G2, and their corre-
sponding Hilbert transforms, H2, are employed [11]. Given
that the filters combine selection for scale and orientation,
the filtering operation is extended to n scales to efficiently
cover different frequency bands with respect to orientation
via an oriented Gaussian pyramid decomposition [11].

Following [29], a spatiotemporal region corresponding
to coherent motion is characterized by the ratio of the dif-
ference between two opponent energy measures and their
sum. Thus, measures of coherent motion energy can be cap-
tured both horizontally (ER, EL) and vertically (EU , ED)
as a function of time, within the frequency band extracted
by the quadrature filter pair:

Ehor =
∣∣ ER−EL

ER+EL+ε

∣∣, Ever =
∣∣ EU−ED

EU+ED+ε

∣∣ (1)

A small bias ε (approx. 1 % of the maximum energy) is
added for stability in case of overall low energy. A pixel-
wise maximum operation is used to combine Ehor and Ever

into a single measure of coherent motion energy, Emot,
where regions with high values are indicative of potential
coherently moving targets.

2.2. Multiscale target detection

Candidates for coherently moving targets, i.e., regions
with high coherent motion energy, are not necessarily
caused by actual moving objects. A noisy, scintillating or
oscillating background might also effect a peak in the co-
herent motion energy signal, especially as slow noisy back-
ground motion might be coherent over a small temporal in-
terval. Under the assumption that most targets of interest
are composed of a wide range of spatiotemporal frequen-
cies (i.e., textured objects in motion), a candidate region
corresponding to a coherently moving object exhibits a sig-
nificant amount of energy across several scales. Since many
common noise sources concentrate their energy in relatively
high frequencies, aberrations in the coherent motion energy
signal due to noise or noisy backgrounds generally do not
persist in the coarser scales of a multiscale bandpass repre-
sentation.

A coarse-to-fine segmentation strategy [2, 3], based on
radial scanline clustering [23], is employed across n lev-
els of the multiscale representation to extract regions with
high coherent motion energy. On a finer scale, a region ex-
hibiting coherent motion energy is discarded, if it does not
have a corresponding parent on a coarser scale with respect
to both size and spatial location. The multiscale extension
of the radial scanline clustering provides additional robust-
ness against high-frequency noise and large interframe dis-
placements. An accepted region of high motion energy, re-
ferred to as Ei in the remainder, is thereby represented by
the bounding box and the center position (l̃ix, l̃iy), which is
used as an initial estimate for the location of a salient target.

2.3. Target representation

Since the current work is mainly concerned with the re-
covery of the motion of multiple non-rigid targets, the track-
ing algorithm relies on the photometric structure of the mul-
tiple tracked objects. In doing so, targets exhibiting a sim-
ilar geometric structure, e.g. two walking persons, can still
be distinguished based on their spatial appearance.

Given the a priori information about the location of co-
herently moving targets, (l̃ix, l̃iy), defined as the center of
salient regions, Ei, a dynamic internal template represen-
tation is automatically initialized from the first frame of an
image sequence for each target [15]. An internal template,
Ti, initially is defined by the image region specified by the
bounding box of the extracted salient target region, Ei, and
is dynamically matched to each frame of the sequence ac-
cording to a match criterion based on the brightness con-
stancy assumption: The brightness (image intensity) val-
ues of each target remain (approximately) constant between
subsequent frames in a temporal sequence of images [13].

2.4. Robust motion estimation

To match the template Ti to the data, the motion of the
target represented by Ti is estimated and compensated for,
as defined by a recovered flow estimate. Under the as-
sumption that the variation in distance within a target is
small compared to the target-to-camera distance, a paramet-
ric affine motion model is used to constrain flow recovery
(as used to good advantage in previous target tracking re-
search, e.g., [19, 21, 26]) and embedded in an hierarchical
and robust estimation framework [4, 5, 6]. In a parametric
model, the optical flow constraint equation is given by

∇�I�u(�a) + It = 0, (2)

where ∇�I = (Ix, Iy) and It denote the first-order partial
derivatives of the local brightness structure, �u = (u, v)T

represents the flow vector and �a is a set of model parame-
ters, specifying the motion of the local region. In case of an
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affine motion model, u and v are defined as:

u(x, y) = a0 + a1x + a2y (3)

v(x, y) = a3 + a4x + a5y (4)

The recovery of the affine parameters �a =
(a0, a1, . . . , a5)� is formulated as the minimization
of an energy-weighted error measure, ξ(�a), over coherent
energy defined salient regions Ei. With respect to the
possible deviation of the target motion from the affine
model, i.e. under non-rigid and articulated motion, and the
influence of non-target-pixels due to the broad response
characteristics of the oriented energy operator [11], a
standard least-squares solution might be error-prone. Thus,
the minimization problem is reformulated within a robust
estimation framework, employing an error norm ρ(η, σ),
to diminish the influence of outliers [6], with weights
0 ≤ w = w(x, y) = Emot(x, y) ≤ 1, used to make a
point’s contribution proportional to its motion coherence:

min
�a

ξ(�a) = min
�a

∑
(x,y)∈Ei

wρ(∇�I�u(�a) + It, σ) (5)

To facilitate a smooth transition between inliers and out-
liers, the Geman-McClure error norm [14] is employed in
the current implementation, as suggested in [6].

To recover motion with larger displacement, the mini-
mization algorithm is based on a coarse-to-fine gradient de-
scent technique. At each level of a Gaussian pyramid, the
image at the corresponding level is warped according to the
previous estimate of the affine parameters. The warped im-
age is then used to compute a residual change in the parame-
ters according to the gradient descent scheme. The updated
affine parameters are used as initial estimates at the next
pyramid level, until the finest level is reached. Implementa-
tion details of the estimator are given in [5, 6].

As formulated, the robust estimator is still prone to insta-
bilities resulting from the general aperture problem [4, 6]: If
the local neighborhood is too small or devoid of discernable
structure, the motion is not adequately constrained; on the
other hand, overly large regions of spatial support can be in-
consistent with the affine motion model. To ameliorate such
difficulties, a maximum deviation of the recovered affine
parameters from the identity transform is enforced. This
constraint is realized as a threshold on the Frobenius matrix
norm applied to the difference of the first-order affine pa-
rameter matrix and the identity matrix. If the threshold is
exceeded, then the transformation is restricted to that cap-
tured by the translational components only; otherwise, the
full affine transformation is used to characterize the motion.
In this regard, the algorithm has an automatic procedure for
selecting the order of the motion model that is applicable to
the data at hand.

The recovered affine parameters that align a target tem-
plate, Ti, with a region, Ri, in an image frame, I , refine

the coherent energy positional estimate associated with I ,
(l̃ix, l̃iy), to a location with subpixel precision, (lix, liy), to
be associated with the target in the given frame. The tem-
porally sorted set of locations across the sequence com-
prise the trajectory of the target. Additionally, the estimated
affine parameters associated with each frame-to-frame tran-
sition are available to augment the state vectors associated
with the target.

2.5. Confidence measure

To evaluate the goodness of each target location, (lix, liy),
recovered by the affine motion estimator (Sec. 2.4), a nor-
malized confidence measure 0 ≤ π(�a) ≤ 1 is computed
along with each template alignment. For consistency with
the approach to motion estimation, confidence is based on
the residual error, ξres(�a), associated with the recovered
affine parameter vector, �a,

ξres(�a) =
∑

(x,y)∈Ei

wρ(∇�I�u(�a) + It, σ), (6)

with ρ(η, σ) the Geman-McClure error norm, the area of
summation for the region of interest, Ei, defined by coher-
ent energy and 0 ≤ w ≤ 1 the associated weighting coef-
ficients, exactly as for motion estimation purposes, c.f., Eq.
(5).

Toward the definition of a normalized confidence mea-
sure, the residual error, ξres(�a), is itself normalized by
recalling that the Geman-McClure error norm, ρ(η, σ) =
η2/(η2 + σ2), is by definition bounded from above by 1
(and from below by 0). Correspondingly, the residual error,
ξres(�a), is bounded from above by

∑
(x,y)∈Ei

w(x, y), the
sum of the weighting coefficients over the region of interest
Ei (and bounded from below by 0). Pulling these observa-
tions together, the residual error, ξres(�a), can be normalized
through division by

∑
(x,y)∈Ei

w(x, y). Finally, a normal-
ized confidence measure, 0 ≤ π(�a) ≤ 1, is given by

π(�a) = 1 − ξres(�a)∑
(x,y)∈Ei

w(x, y)
(7)

with confidence increasing as the value approaches 1.

2.6. Template adaptation

During tracking, a low match confidence, π(�a), is taken
to indicate a change in the tracked target. The current state
of the internal template, Ti, corresponding to the target does
not correctly reflect the actual data. Possible causes for
change in the tracked object, especially regarding non-rigid
targets, are non-affine shape deformations, perspective dis-
tortions and change in the photometry of the object, i.e.
varying illumination. To compensate for deviation of the
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template, Ti, from the actual data, a temporal integration
technique is employed to dynamically update Ti [15].

The confidence measure π(�a) is used as a weighting co-
efficient, directly controlling the amount of temporal inte-
gration applied to the template Ti. π(�a) is inversely propor-
tional to the degree of template adaptation, i.e., the lower
the match confidence, the more update is necessary to pre-
vent the algorithm from losing track of the target, resulting
in:

T̂i = π(�a)Ti + (1 − π(�a))Ri (8)

The updated internal template T̂i is calculated as the
confidence-weighted sum of the template Ti and the cor-
responding image region Ri, which was aligned with the
template by the affine estimator. As a result, the adapted in-
ternal template Ti used to track the corresponding target in
frame I(x, y, t) captures both the geometric change of the
target in frame I(x, y, t), by means of the image registration
operation (see Sec. 2.4), and the change in the photometric
structure of the target in the previous frame I(x, y, t − 1),
estimated by the confidence value π(�a) of the alignment of
the template Ti to the data.

3. Empirical evaluation

The described approach to target detection and tracking
has been implemented in software and tested on an illustra-
tive set of synthetic and natural image sequences, by means
of computing an RMS error measure ξRMS between the re-
covered target locations (lix, liy) and ground truth for each
frame.

To evaluate performance against exact ground truth and
systematically manipulated signal-to-noise ratio (SNR), an
image sequence of a fish translating through an aquarium
has been synthetically generated and corrupted with addi-
tive, zero mean Gaussian noise of varying standard devia-
tion. Fig. 1 (top left) shows four frames of this sequence
at signal-to-noise ratios of � = ∞, � = 100, � = 50 and
� = 20 (left to right, top to bottom) as well as recovered vs.
ground truth trajectories.

The addition of Gaussian noise represents a violation of a
basic premise of the proposed approach, the brightness con-
stancy assumption, manifesting in an increase of the resid-
ual error, ξres(�a), of the recovered affine transform, as the
standard deviation of the noise increases. Consequently,
the RMS error ξRMS , as shown in Fig. 2 (first group), in-
creases as function of additional Gaussian noise, since the
recovered affine parameters �a become less ideal. Given that
the confidence π(�a) (see Sec. 2.5) directly depends on the
residual error ξres(�a), the confidence of each recovered tar-
get location (lix, liy), that is the degree to which this position
can be trusted, drops, as the noise increases. The charac-
teristic of the confidence measure as a function of frame
number is shown in Fig. 3.
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Figure 1. Left to right, top to bottom: Four frames
of the Fish sequence (x×y×t=240×180×80) at differ-
ent SNR � (see Sec. 3), two frames each of the
Lab (x×y×t=240×180×65), Tree (x×y×t=240×180×60) and
PETS2000 (x×y×t=320×240×70) sequences, along with
corresponding coherent energy maps and marked
recovered target locations, (+). The lower plots
show recovered vs. ground truth trajectories.

It is important to note, that even at a low signal-to-noise
ratio of � = 20, the tracking algorithm performs reasonably
well, with an RMS error of ξRMS = 6.15 and an average
confidence value across the sequence of π(�a) = 0.8527.
The reasons for the observed performance are twofold:
First, the target of interest does not deform non-rigidly dur-
ing the sequence, which restricts the affine estimator to
translational components only. Second, the rich texture on
the target contributes to a strong coherent motion energy
signal (see Sec. 2.1), which still allows for a successful
extraction of the coherently moving object in combination
with the multiscale target detection algorithm, even at low
signal-to-noise ratios.

To document the contribution of various components of
the approach, results are shown with respect to three nat-
ural image sequences and hand-picked ground truth as ma-
jor algorithmic components are incorporated systematically.
First, results are shown for a standard normalized corre-
lation tracker, restricted to an n × n window (n = 15)
about the predicted target location, based on linear extrap-
olation of target speed from previous estimates (algorithm
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Figure 2. RMS error for Fish (� ∈ [20, 50, 100,∞]),
Lab, Tree and PETS2000 (Ai, i ∈ [1, 2, 3, 4]).

A1). Second, results are shown for the same correlation
tracker, but now with search about a location indicated by
coherent motion energy, as described in Sec. 2.1 (algorithm
A2). Third, results are shown for correlation tracking, con-
strained by coherent motion energy, but further augmented
to include template adaptation, as shown in Sec. 2.6 (algo-
rithm A3). Fourth, results for the complete algorithm are
shown, as the affine estimator (as described in Sec. 2.4)
replaces the correlation estimator, while the motion energy
and adaptive template components remain in place (algo-
rithm A4). For all versions, the multiscale motion energy
detection algorithm is used for automatic initialization (see
Sec. 2.2). In all correlation-based algorithms the proposed
confidence measure π(�a) dependent on the residual error of
the affine transform estimation is replaced by a similarity
measure independent from photometric effects based on the
normalized correlation coefficient (e.g., [8]). Results are
shown in Figs. 1, 2 and 3.

The Lab sequence shows a person walking through an
indoor environment. There are significant amounts of depth
motion, as well as non-rigid deformations. A sequence
from the PETS2000 dataset1 is used to evaluate the pro-
posed approach in terms of multiple small targets and large
target-to-camera distance. The influence of noisy scintillat-
ing background motion, i.e., fluttering leaves, as an example
of structured noise, in combination with a non-rigidly mov-
ing target, is evaluated by means of the Tree sequence. Note
that in this sequence attempts to constrain tracking based
on temporal differencing would fail, as there is temporal
change over large portions of the background [28].

The comparison of the RMS error measure (Fig. 2) for
all trackers under consideration shows that each proposed
component to the algorithm contributes to the decrease of
the tracking error. The delineation of targets of interest
based on motion coherence (A2) is clearly superior to us-
ing estimated target speed (A1) as a correlation search con-
straint, since it provides a strong means of parsing the data
into relevant and irrelevant portions. The addition of tem-
poral integration (A3) as a way to adapt the template to
changes in the data (see Sec. 2.6) proves useful especially in
sequences, where the target’s geometry is constantly chang-
ing, i.e., in the Lab and Tree sequences. Template adap-
tation is only a minor improvement, if the target’s geom-

1http://peipa.essex.ac.uk/ipa/pix/pets/
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Figure 3. Confidence π(�a) as a function of frame
number for Fish (A4) (top) and Lab (A3 and A4),
Tree (A4) and PETS2000 (A4) (bottom). The mean
confidence over all frames is shown at the right of
the plot.

etry and photometry remains approximately constant over
the sequence, i.e., as seen in the PETS2000 sequence.

Temporal integration without adequate image registra-
tion leads to the problem that a significant number of frames
might need to be considered before the template has fully
adapted to a change in the target, since both variations in
the geometry and photometry must be compensated. This
behavior is evident in the evolution of the confidence mea-
sure π(�a) of the Lab sequence, which exhibits an oscillat-
ing form, as seen in Fig. 3 (algorithm A3). Replacing the
correlation estimator with the affine motion estimator (A4)
solves this problem, since the geometric change in the target
is accounted for by the recovered affine transform; whereas,
temporal integration is employed only to handle the photo-
metric and non-affine variations in the target.

It also is of note that non-affine shape deformations, i.e.,
due to significantly non-rigidly moving objects (e.g., a per-
son walking parallel to the image plane, as in the Tree se-
quence) can cause jitter in the confidence values and lead to
a higher RMS error, since the target motion deviates from
the affine model. In this regard, the importance of the unify-
ing concept of motion coherence becomes apparent. Since
the presented approach continuously uses coherent motion
energy to define what part of the data should be incorpo-
rated in the calculation, it inherently focuses computation
on linearly moving regions of the target, which exhibit a
stronger coherent energy signal, i.e., the energy maps of
the Tree sequence highlight the upper part of body while
attenuating the influence of the incoherent motion of the
legs, as shown in Fig. 1. By adhering to this framework,
the algorithm manages to perform reliably in many situa-
tions, without losing track of the targets of interest, even if
there is a significant deviation from the adopted affine mo-
tion parametrization.

On the whole, the proposed approach represents a
marked improvement over correlation-based trackers with
respect to lower RMS error and higher confidence values
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(Figs. 2 and 3). Improvement is observed for a variety of
scenarios, including small targets (PETS2000), noisy back-
grounds (Tree) and non-rigid targets (Lab and Tree). Fur-
ther, while many extant approaches rely on manual ini-
tialization, all results presented here are auto-initialized
through the integrated target detection procedure (Sec. 2.2).

4. Summary

The decomposition of an image sequence into the trajec-
tories of salient targets supports subsequent processing in
terms of interpretation, identification and classification. To-
ward such ends, this paper has presented an approach to de-
tecting and tracking non-rigid objects in image sequences.
The approach employs an algorithm consisting of a mul-
tiscale target detector and a constrained, adaptive tracker
with subpixel precision. Coherent motion energy plays a
prominent role in the definition and unification of the ma-
jor components of the approach. Empirical evaluation of a
software realization of the approach shows that it is able to
recover the projected two-dimensional motion of non-rigid
targets at various spatial scales with an interesting level of
robustness to noise.
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