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The Applicability of Spatiotemporal Oriented
Energy Features to Region Tracking

Kevin J. Cannons and Richard P. Wildes

Abstract—This paper proposes the novel application of an uncommonly rich feature representation to the domain of visual
tracking. The proposed representation for tracking models both the spatial structure and dynamics of a target in a unified
fashion, while simultaneously offering robustness to illumination variations. Specifically, the proposed feature is derived from
spatiotemporal energy measurements that are computed by filtering in 3D, (x, y, t), image spacetime. These spatiotemporal
energy measurements capture the underlying local spacetime orientation structure of the target across multiple scales. The
breadth of applicability of these features within the field of visual tracking is demonstrated by their instantiation within three
disparate tracking paradigms that are representative of the various basic types of region trackers in the field. Instantiation
within these three tracking paradigms requires that the raw oriented energy measurements be post-processed using different
methodologies that range from histogram accumulation to the identity transform. Qualitative and quantitative empirical evaluation
on a challenging suite of videos demonstrates the strength and applicability of the proposed representation to tracking, as
it outperforms other commonly-used features across all tracking paradigms. Moreover, it is shown that overall high tracking
accuracy can be obtained with this proposed representation, as spatiotemporal oriented energy instantiations are shown to
outperform several recent, state-of-the-art trackers.

Index Terms—Visual tracking, feature representations, motion analysis, spatiotemporal orientation, visual spacetime
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1 INTRODUCTION

1.1 Motivation

VISUAL tracking is a core area of computer vision,
with both theoretical and practical significance.

Even given this strong motivation, to date a general
purpose visual tracker that operates robustly across
all real-world settings has not emerged. One key
challenge for visual trackers is illumination effects.
Under the use of many popular representations (e.g.,
colour), the features’ appearance changes drastically
depending on the lighting conditions. A second chal-
lenge for visual trackers is clutter. As the amount of
scene clutter increases, so to does the chance that the
tracker will be distracted away from the true target
by other “interesting” scene objects (i.e., objects with
similar feature characteristics). Finally, trackers often
experience errors when the target exhibits sudden
changes in appearance or velocity that violate the
underlying assumptions of the system’s models.

In this work, it is proposed that the choice of
representation is key to meeting the above challenges.
A representation that is invariant to illumination
changes will be better able to track through significant
lighting effects. A feature set that provides a rich char-
acterization will be less likely to confound the true
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target with other scene objects. Finally, a rich represen-
tation allows for greater tracker resilience to sudden
changes in appearance or velocity. This resilience is
attained because the tracker can rely on stable, more
consistent components of the representation as one
or more components experience a fast change. In the
current paper, a spatiotemporal oriented energy (SOE)
representation is shown to address the above require-
ments and is applied for the first time to the domain
of visual tracking. This representation uniformly cap-
tures both the spatial and dynamic properties of the
target for a rich characterization, with robustness to
illumination and amenability to on-line updating.

1.2 Related research

Visual trackers can be coarsely divided into three
general categories: (i) discrete feature trackers (ii)
contour trackers, and (iii) region trackers [1], [2]. Since
the present contribution falls into the region tracker
category, only the most relevant works in this class
will be reviewed. Some region trackers isolate moving
regions of interest by performing background subtrac-
tion and data association between the detected fore-
ground “blobs” [3], [4], [5], [6], [7], [8]. A limitation
of the blob tracking approach is that the systems tend
to assume stationary cameras and rely on background
subtraction techniques, which are often noisy.

Another category of region trackers that has seen
significant recent research leverages detectors that are
trained using offline [9], [10] or online [11], [12],
[13], [14], [15], [16], [17] machine learning techniques.
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Offline methods tend to make use of human detectors
[18] to identify potential target locations, which are
subsequently linked via data association [9], [10].
These offline systems have the limitation that they can
only track one type of target (the object upon which
the detector was trained). Systems employing online
target detection methods learn the properties of the
target in the first frame and subsequently update the
internal target template thereafter [11], [12], [16], [14].

Region trackers have also been considered that
seek efficiency through more compact target repre-
sentations. Such systems collapse spatial information
across the target support and use histogram represen-
tations of the target during tracking [19], [20], [21],
[22], [23], [24]. Earlier instantiations of this approach
lacked discriminability owing to collapse of spatial
layout information across target support [19], which
led to subsequent refinements that preserved various
amounts of target layout [25], [20], [21], [22], [24].

A final type of region tracker retains spatial or-
ganization within the tracked area by using (dense)
pixelwise feature measurements [26], [27], [28], [29],
[30], [31], [32], [33], [13]. Building on early image
alignment work [26], pointwise warp (PW) tracking
subsequently was refined to include more advanced
motion models [34], robust error metrics [35], and
more sophisticated appearance model updating mech-
anisms [30], [31].

A key underlying dimension that distinguishes re-
gion trackers is the degree to which they aggregate
spatial information across target support: Some com-
pletely collapse spatial information (e.g., mean shift
[19]); others consider a coarse measure of spatial
layout (e.g., FragTrack [22]); still others maintain com-
plete target spatial layout (e.g., [35]). Depending on
the tracking task at hand, the amount of spatial layout
information that should be used for best accuracy
may vary and research has considered automatically
adapting tracker operation along this dimension, e.g.,
[36]. Since the amount of spatial layout retained is
a critical dimension of tracker design, the feature set
proposed in the current paper will be evaluated at
three different points along this spectrum.

A common issue that connects region trackers of
all types is the base features or measurements that
are used. The most commonly used features in region
tracking are pixel intensity (e.g., [26], [37], [22]) and
color (e.g., [38], [19], [39]). Color and intensity are
notoriously sensitive to illumination changes, which
has prompted the use of various color spaces with
some limited improvement, e.g., [20], [21].

Another commonly-used feature representation is
the image gradient, e.g., [40], [21]. An advantage of
image gradients is that they often remain more consis-
tent throughout illumination changes in comparison
to color or intensity; however, they also produce spu-
rious responses from heavily textured materials and in
clutter. Another similar representation considers the

output of orientation selective filters [30]. In a similar
fashion to color features (e.g., RGB channels), this
representation consists of multiple measurements or
“channels” at each location.

Recovered motion is another cue that can be used
as a feature for tracking (e.g., [41], [42], [43], [15]).
Motion-based cues can be beneficial in camouflage
situations where a target is nearly indistinguishable
from the background when considering its appear-
ance in isolation, but can be identified clearly from
its dynamics. However, motion cues may not be suf-
ficiently discriminative in isolation when the targets
are prone to velocity changes or exhibit similar motion
patterns to other scene objects.

Although a range of feature representations has
been considered, each of these commonly-used repre-
sentations is prone to failure in certain situations. In
an attempt to leverage the complementary nature of
various features, numerous trackers have considered
combining cues [44], [41], [45], [46], [47], [48], [49],
[33], [15]. One popular approach is to combine color
with edges [44], [47], [33]. Other approaches have
considered joint feature-spatial spaces that combine
an explicit positional feature with other cues (e.g.,
[45], [46]). The combination of appearance cues with
recovered motion has also been fruitful (e.g., [41],
[48], [49], [15]). Although feature combinations have
demonstrated improved tracking performance, there
are drawbacks of this approach: (i) Effective cue inte-
gration remains an open problem. (ii) Feature extrac-
tion requires additional processing. (iii) The designer
must ensure that a sufficient number and variety of
features are available for a given tracking task.

A research tack that arguably requires greater at-
tention is that of deriving new feature sets for vi-
sual tracking. In particular, limited attention has been
given to the development of uniformly derived fea-
ture representations for tracking that encompass both
spatial and temporal domains. Potential benefits of
an integrated approach include the ability to combine
static and dynamic target information in a natural
fashion as well as simplicity of design and imple-
mentation. In response to this observation, this paper
proposes a feature representation, based on spatiotem-
poral oriented energies, that has not been used previ-
ously in the context of visual tracking. These energies
provide a particularly detailed target description, with
robustness to illumination, that captures both appear-
ance and dynamics in an integrated fashion. It should
be stressed that similar spatiotemporal oriented en-
ergy features have been applied with success to other
visual information processing tasks, e.g., motion esti-
mation [50], [51], action spotting [52], [53], dynamic
texture analysis [54], qualitative descriptors [55], and
spacetime stereo [56], but never before to visual tracking.
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1.3 Contributions

In light of previous research, the main contributions
of the present paper are as follows.

• A spatiotemporal oriented energy (SOE) repre-
sentation, similar in spirit to representations that
have been demonstrated with success in other
areas of computer vision, is uniquely applied
to visual tracking. This representation offers an
extremely rich target representation, capturing
both appearance and motion cues, while simulta-
neously providing significant robustness to illu-
mination effects.

• Theoretical methods are developed for instantiat-
ing the SOE features in three disparate tracking
architectures. Specifically, theoretical techniques
are derived showing that the SOE features can
be used to construct a histogram representation
for use in mean shift tracking, to represent target
subregions with a number of histograms in the
FragTrack framework, and as pointwise measure-
ments in the warping paradigm.

• The discriminative power of the proposed SOE
representation is demonstrated via a direct com-
parison against other commonly-used features.
Four feature types in three different tracking ar-
chitectures are considered, with a total of eleven
trackers used for direct comparison of SOEs vs.
other features. The SOE representation offers overall
superior tracking accuracy when compared to alterna-
tive features using the same tracking paradigm.

• In addition to the eleven-way feature set com-
parison, five additional state-of-the-art tracking
systems are evaluated. When the entire set of six-
teen algorithms are evaluated on a suite of nine
challenging videos, one of the proposed SOE-based
trackers yields best overall tracking accuracy. The
other two trackers based on SOEs are among the
top five best overall systems and show superior
performance to recent strong trackers.

Preliminary versions of this research have been
reported previously [23], [57].

2 TECHNICAL APPROACH

2.1 Spatiotemporal oriented energies (SOEs)

Video sequences induce very different orientation pat-
terns in image spacetime depending on their contents.
For instance, a textured, stationary object yields a
much different orientation signature than if the very
same object were undergoing translational motion.
An efficient framework for analyzing spatiotemporal
information can be realized through the use of 3D,
(x, y, t), oriented energies [58]. These energies are de-
rived from the filter responses of orientation selective
bandpass filters that are applied to the spatiotemporal
volume representation of a video. A chief attribute
of an oriented energy representation is its ability to

encompass both spatial and dynamic aspects of visual
spacetime, strictly through the analysis of 3D orienta-
tion. Consideration of spatial patterns (e.g., textures)
is performed when the filters are applied within the
image plane. Dynamic attributes of the scene (e.g.,
velocity and flicker) are analyzed by filtering at ori-
entations that extend into the temporal dimension.

The desired oriented energies are realized using
broadly tuned 3D Gaussian second derivative fil-
ters, G2 (θ, γ), and their Hilbert transforms, H2 (θ, γ),
where θ specifies the 3D direction of the filter axis
of symmetry, and γ indicates the scale. Thus, the
oriented energies provide a local decomposition in
terms of angular, θ, and radial, γ, frequency, where the
former captures the local directionality of image struc-
ture and the latter encompasses the local granularity.
In particular, to attain an initial measure of energy, the
filter responses are pointwise rectified (squared) and
summed according to

E (x; θ, γ) = [G2 (θ, γ) ∗ I (x)]2 + [H2 (θ, γ) ∗ I (x)]2 , (1)

where x = (x, y, t) are spatiotemporal image coordi-
nates, I is an image, ∗ denotes convolution, and care
should be taken to normalize the filters to ensure that
their energy across scales is constant [59].

The initial definition of local energy measurements,
(1), is dependent on image contrast (i.e., it will in-
crease monotonically with contrast). To obtain a purer
measure of the relative contribution of orientations ir-
respective of image contrast, pointwise normalization
is performed,

Ê (x; θ, γ) =
E (x; θ, γ)∑

θi

∑
γi
E (x; θi, γi) + ε

, (2)

where ε is a constant introduced as a noise floor and to
avoid numerical instabilities when the overall energy
content is small. Additionally, θi and γi consider all
orientations and scales, respectively.

For illustrative purposes, Fig. 1 displays a subset of
the energies that are computed for a single frame of a
traffic sequence. The scene involves a white car mov-
ing to the left near the center of a traffic intersection.
Notice how the energy channels that are tuned for
leftward motion are very effective at distinguishing
this car from the static background. Consideration of
the channels tuned for horizontal structure show how
they capture the overall orientation structure of the
white car. In contrast, while the channels tuned for
vertical textures capture the outline of the crosswalks,
they show little response to the car, as it is largely
devoid of vertical structure at the scales considered.
Finally, note how the energies become more diffuse
and capture more gross structure at the coarser scale.

From the theoretical development as well as the
illustrative example, it appears that spatiotemporal
oriented energies are well-suited to form the feature
representation in visual tracking applications for four
significant reasons:
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Fig. 1. Illustrative example showing a sample of the spatiotemporal oriented energy representation captured for
a single video frame. (Top Left) Frame of a MERL traffic video sequence [60]. (Top and Bottom Rows, Columns
Two to Four) Selected spatiotemporal oriented energy channels corresponding to the input video frame. Finer
and coarser scales are shown in top and bottom rows, resp. From left to right, the energy channels roughly
correspond to horizontal structure, vertical structure, and leftward motion.

• A rich description of the target is attained due
to the fact that oriented energies encompass both
target appearance and dynamics. This richness
will be shown to allow for trackers that are more
robust to clutter both in the form of background
static structures and other moving targets in the
scene. Since the representation contains both spa-
tial and dynamic attributes, targets and distrac-
tors can be differentiated based on velocities if
their appearances are similar, or vice versa.

• The oriented energies are robust to illumination
changes. By construction, the proposed repre-
sentation provides invariance to both additive
and multiplicative intensity changes. Invariance
to additive biases is achieved through the process
of bandpass filtering, (1); whereas multiplicative
biases are removed via normalization, (2).

• The energies can be computed at multiple scales,
allowing for a multiscale analysis of the target at-
tributes. Finer scales provide information regard-
ing motion of individual target parts (e.g., limbs)
and detailed spatial textures (e.g., facial expres-
sions, clothing logos). Complementary coarser
scales provide information regarding the overall
target velocity and its gross shape.

• The oriented energies are efficiently computed
via linear and pointwise non-linear operations
[61], with amenability to real-time realizations on
GPUs [62].

To demonstrate the widespread applicability of SOE
features to visual tracking, a representative set of
trackers from the huge set of all region trackers is
considered. As noted in the discussion of related
work, a key dimension along which region trackers
vary is the amount of spatial layout information they
employ. Correspondingly, in the remainder of this
section three representative trackers along this dimen-
sion are selected for instantiation with SOE features:

mean shift tracking [19] (zero spatial arrangement
information), fragment tracking [22] (limited spatial
arrangement information), and pointwise warp track-
ing [35] (complete spatial arrangement information).

2.2 SOE mean shift tracking
The energies as defined in (2) exhibit broad response
patterns, particularly at coarser scales. This property
is illustrated in Fig. 1. The overly diffuse responses
emerge due to the particular filters that are employed
as well as the downsampling/upsampling that is
utilized in pyramid processing. However, given that
the tracking problem is being considered, the goal is
to locate the target’s position as precisely as possible.
Coarse energies remain important because they pro-
vide information regarding the target’s gross shape
and motion, but their localization must be improved
for accurate tracking. To that end, a set of weights are
applied to the normalized energies, (2), according to

Ê∗ (x; θ, γ) = Ê (x; θ, γ) z (x; θ) , (3)

where z are pixelwise weighting factors for a partic-
ular orientation channel, θ. The weighting factors for
a specific orientation are computed by integrating the
energies across all scales and applying a threshold,
Zθ, according to

z (x; θ) =

{
1, if

∑
γi
Ê (x; θ, γi) > Zθ

0, otherwise
. (4)

Note that there is a separate threshold, Zθ, applied
to each orientation θ, but these thresholds are uni-
formly and automatically derived from the image
data. Specifically, in this work, the thresholds are
set based on the average energy in each orientation
channel, θ. When computing the weights, z, summing
across scales allows the better localized fine scales
to sharpen the coarse scales, while the coarse scales
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help to smooth the responses of the fine scales. Fur-
thermore, by calculating weights separately for each
orientation, prejudice toward any particular type of
oriented structure (e.g., static vs. dynamic) is avoided.

Interestingly, while application of these weights was
found to improve the performance of SOE mean shift
tracking, it had little impact on fragment and point-
wise warp instantiations, so is not included therein.
Apparently, the loss of target spatial layout informa-
tion incurred through holistic histogram accumula-
tion in mean shift tracking demands increased pre-
cision in energy localization relative to the alternative
paradigms that maintain increased target layout.

As the mean shift tracking paradigm is being con-
sidered in this section, the spatial information is col-
lapsed to represent the target as a histogram. Unlike
the traditional mean shift tracker that employs color
histograms [19], here a spatiotemporal oriented en-
ergy histogram is constructed. Specifically, each bin
in the histogram corresponds to the weighted energy
content of the target at a particular scale and orien-
tation. The template histogram that defines the target
in the first frame is given by

qu = C
∑
i

k
(‖xi‖2

)
Ê∗ (xi, t0;φu) , (5)

where k is the profile of the tracking kernel, C is a
normalization constant to ensure the histogram sums
to unity, xi = (x, y) is a target pixel at some temporal
instant, i ranges so that xi covers the template sup-
port, and φu is the scale and orientation combination
which corresponds to bin u of the histogram.

To evaluate target candidates in a current frame,
candidate histograms are defined as

pu (y) = Ch

∑
i

k

(∣∣∣∣
∣∣∣∣y − xi

h

∣∣∣∣
∣∣∣∣
2
)
Ê∗ (xi, t;φu) , (6)

where y is the center of the target candidate’s tracking
window, h is the bandwidth of the tracking kernel and
i ranges so that xi covers the candidate support.

A sample energy histogram for the target region
shown in Fig. 1 (represented by the white box) is
shown in Fig. 2. The bin corresponding most closely
to leftward motion at the finest scale (bin 5) has by far
the most energy. The next two high energy counts are
found in bins 2 and 9 which are tuned to combinations
of dynamic and static structure, with an emphasis
on leftward motion and spatial orientation similar to
that of the target. The overall horizontal structure of
the car is captured by the energy in bins 1 and 4. In
contrast, bins 3 and 6, which roughly represent static,
vertical structure, do not have strong responses, given
the nature of the car target. The histogram also shows
that the SOEs for the highest frequency structures
have the strongest response, as the target is small and
dominated by relatively finer scale structure.

With template, q, and candidate, p(y) histograms
defined in terms of SOE features, (5) and (6), resp., the
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Fig. 2. SOE histogram for the target region in Fig. 1.

mean shift tracking instantiation otherwise follows
the original approach [19]. Histograms with m bins
are compared using the Bhattacharyya coefficient [63],

ρ [p (y) ,q] =
m∑

u=1

√
pu (y) qu , (7)

which is maximized with respect to target position, y
using mean shift iterations starting from the target’s
position in the previous frame.

2.3 SOE FragTrack
In a similar manner to the mean shift tracker, the
original FragTrack system operates upon a feature
histogram representation of the target [22]. However,
rather than collapsing all information regarding the
target’s spatial layout, FragTrack represents the target
using a number of histograms, extracted from differ-
ent rectangular regions within the target support.

To instantiate SOE features within the FragTrack
framework, for each rectangular patch defined in the
target support, an energy histogram is constructed in
a similar manner to those proposed for the SOE mean
shift tracker. Specifically, a histogram bin for the jth

fragment in the template is defined according to

q̄ju = C̄
∑
i

Ê (xi, t0;φu) , (8)

where C̄ is a normalization constant to ensure the
histogram sums to unity and xi = (x, y) is a sin-
gle target pixel at some initial temporal instant, t0.
Additionally, i ranges so that xi covers the template
support of the jth fragment and φu is the scale and
orientation combination that corresponds to bin u of
the histogram. Similarly, a histogram bin for the jth

fragment within a candidate at time, t, is defined as

p̄ju = C̄
∑
i

Ê (xi, t;φu) . (9)

Note that for the FragTrack equations, overbars are
used to differentiate between the analogous histogram
parameters that are used for mean shift tracking.
Although the energy histograms constructed for the
fragments share similarities with the holistic ones
used in the SOE mean shift framework, an important
difference is the lack of a spatial weighting kernel.
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With the SOEs instantiated as fragment histograms,
FragTrack tracking can follow the standard procedure
[22]. To compare template to candidates in a current
frame, the Bhattacharrya coefficient, (7), is employed
once again. To combine coefficient scores across j
fragments, the scores for each candidate in the search
region, ρ

[
p̄j (y) , q̄j

]
, are sorted from best to worst.

Comparisons between candidates are made using the
fragment with the sth best score. The motivation is
that s is selected such that it is the maximum number
of fragments that are expected to provide inlier mea-
surements and thereby provides robustness to partial
target occlusions. Making these ideas more precise, let
j∗ indicate the fragment with the sth best score for a
particular candidate position, y. The overall score of
a candidate is evaluated as

Ω(y) = ρ
[
p̄j∗ (y) , q̄j∗

]
. (10)

To locate the target within a current frame, the similar-
ity equation, (10), is optimized over y via exhaustive
search within a radius, D, of the estimated target
position in the previous frame. Integral images are
used for histogram construction to enable efficient
search.

2.4 SOE pointwise warp tracking
Unlike the mean shift SOE tracker of Section 2.2 and
the SOE FragTrack system of Section 2.3 that perform
some degree of spatial accumulation over the energy
measurements, warping trackers employ pointwise
feature measurements; therefore, complete informa-
tion regarding the target’s spatial configuration is re-
tained. In this framework, the normalized, pointwise
energy features, (2), of Section 2.1 are incorporated
directly to define the target. In particular, the first
frame template is defined as

Q (x, φu) = Ê (x, t0;φu) , (11)

for energies measured at some start time, t0, and spa-
tial support, x = (x, y), over some suitably specified
region. Additionally, φu = (θu, γu) is the orientation
and scale combination that corresponds to a particular
channel of data, u. Thus, the template is indexed
spatially by position, (x, y), and at each position it
provides a set of θ × γ energy measurements that
indicate the relative presence or absence of spacetime
orientations. The candidate feature images are defined
similarly according to

P (x, φu, t) = Ê (x, t;φu) , (12)

where t indicates the current time instant.
Note that the target representation, (12), is in con-

trast to standard template tracking-based systems that
typically only utilize a single channel of intensity
features during estimation [26], [34], [35]. Further,
even previous approaches that have considered mul-
tiple measurements/pixel make use of only spatially

derived features (e.g., [30]), which will be shown in
Sec. 3 to significantly limit performance in comparison
to the proposed pointwise warp tracker.

Tracking using a PW approach consists of matching
the template, Q, to the current frame of the sequence
so as to estimate and compensate for the interframe
motion of the target. In the present approach, both
the template, Q, and a candidate from the current
image frame, P , are represented in terms of oriented
energy measurements, (2). An affine motion model
is used to capture target interframe motion, as ap-
plicable when the target depth variation is small
relative to the camera-to-target distance [64], [27],
[31]. The affine motion model is defined explicitly as
u (x, y; a) = (a0 + a1x+ a2y, a3 + a4x+ a5y)

� where
a = (a0, a1, . . . a5)

� are the motion parameters and
(x, y) are pixel coordinates.

The affine parameters, a, are estimated by mini-
mizing an error function that is derived from the
optical flow constraint equation (OFCE). Since the
target representation spans not just a single spatial im-
age plane, but multiple feature channels (orientations
and scales) of SOEs, error minimization is performed
across the target spatial support and over all feature
channels. To measure deviation from the OFCE, a
robust error metric, ψ(η, σ), is utilized [35], which is
beneficial for occlusions, imprecise target delineations
that include background pixels, and target motion
that deviates from the affine motion model (e.g., non-
rigid, articulated motion). The resulting error to be
minimized with respect to a is∑
x

∑
θ

∑
γ

ψ
[∇�P (x; θ, γ)u (a) + Pt (x; θ, γ) , σ

]
, (13)

where ∇�P = (Px, Py) are the first-order spatial
derivatives of the image energy measurements in the
current frame and Pt = P −Q denotes the first order
temporal derivative found by computing the differ-
ence between the candidate and aligned template.
In the present implementation, the Geman-McClure
error metric [65] is utilized with σ, the robust metric
width, as suggested in [35]. Minimization to yield the
motion estimate, (13), is performed using a gradient
descent procedure [35]. To increase the capture range
of the tracker, the minimization process is performed
in a coarse-to-fine fashion [34], [35].

2.5 Template and scale updates
When tracking an object through a long video se-
quence, it is common that its characteristics will
change. For the proposed SOE trackers, template
adaptation is necessary to ensure that changes
in target appearance (e.g., target rotation, addi-
tion/removal of clothing accessories, changing facial
expression) and dynamics (e.g., speeding up, slowing
down, changing direction) are accurately represented
by the current template. To combat such changes,
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the proposed SOE trackers include straightforward
autoregressive type template update mechanisms. The
template update equation for the SOE mean shift
tracker is defined as

qt+1 = αMSπq
t + (1− αMS) (1− π)p∗ , (14)

where αMS is a weighting factor to control the speed
of the updates, qt is the template at frame t, and
π = ρ [p (y∗) ,qt] is the Bhattacharyya coefficient be-
tween the current template and the optimal candidate
found in the tth frame at y∗. Additionally, p∗ =
p (y∗) denotes the optimal candidate histogram in
the current frame. Following each application of (14),
the resulting template is renormalized and thereby
remains consistent with the overall formulation.

For the SOE FragTrack and PW systems, a similar
template update is utilized

Qt+1
Alg = αAlgQt

Alg + (1− αAlg)P∗
Alg , (15)

where Alg indicates the tracking algorithm (i.e.,
Alg = {FragTrack,PW}. Additionally, Q denotes the
template data structure for the two trackers, while
P∗ is the optimal candidate region identified in the
current frame. Equations (14) and (15) differ slightly in
that the mean shift update includes additional weight-
ing terms based on the Bhattacharyya match score,
π. A comparable term could be included in (15) but
empirical evaluation revealed this was unnecessary.

The size of a target may change during a video
sequence as well. The SOE mean shift and FragTrack
scale update mechanisms follow those originally pro-
posed for those paradigms [19] and [22], resp. Size
changes for the SOE PW system are handled by the
scaling afforded by the affine tracking transformation.

Interestingly, the simple template update mecha-
nisms used here, even though not representative of
the state-of-the-art in adaptation [30], [66], [67], [31],
[12], allow the SOE trackers to achieve competitive
results, owing to their feature representation strength.
In particular, the richness of the representation, cap-
turing both spatial and dynamic target properties,
allows for the relatively stable components of the
representation to keep the tracker on target during
changes, while the altered components adapt using
the update mechanisms provided.

3 EMPIRICAL EVALUATION

3.1 Data Sets and Tracker Settings
Extensive empirical evaluation has been conducted,
comparing the performance of sixteen distinct trackers
on a suite of nine challenging and publicly avail-
able video sequences. The suite of video sequences
span the outstanding challenges of visual tracking,
including drastic illumination changes, small targets,
scene objects with similar visual appearance to the
target, appearance changes, and occlusions. Two of
the sequences also involve non-stationary cameras.

TABLE 1
Videos used in empirical evaluation.

Video Description
Occluded
Face 2 [12]

Facial target. In plane target rotation. Cluttered
background. Appearance change via addition of
hat. Significant occlusion by book and hat.

Tiger 2 [12] Hand-held toy animal target. Small target with
fast, erratic, and articulated motion. Cluttered
background/foreground. Occlusion as target
moves amongst leaves.

Sylvester
[31]

Hand-held stuffed animal target. Fast erratic
motion, including out-of-plane rotation/shear.
Illumination change across trajectory.

Illumination
[23]

Human target with significant non-rigid defor-
mations. Drastic lighting changes between lit
and unlit areas. Cluttered background. Video
available in color.

PETS [68] Extremely small cyclist target with indistinct
color. Cluttered background. Partial occlusion
behind pedestrian. Video available in color.

Ming [69] Facial target. In-plane and out-of-plane rotation.
Significant illumination and scale changes.

Woman [22] Deformable human target with panning and
zooming camera. Extended and significant par-
tial occlusions. Video available in color.

Car11 [31] Car rear target with pursuit camera. Night time
scene with harsh lighting and low contrast.
Video available in color.

Pop
Machines
[57]

Multiple similar appearing targets with cross-
ing trajectories. Low quality surveillance video.
Harsh lighting. Full occlusion from pillar.

Of the nine videos, four are available both in color
and greyscale. The video sequences that are con-
sidered in this evaluation are summarized in Ta-
ble 1. Manually labelled, ground truth tracking win-
dows and their corresponding videos are available
for download at http://www.cse.yorku.ca/vision/
research/visual-tracking/.

The tracking algorithms used for comparison in-
clude the three proposed in Section 2 as well as thir-
teen additional benchmark systems. These benchmark
systems serve two purposes. Eight of the benchmark
trackers are included to evaluate the performance of
the proposed SOE representation against commonly
used feature sets (i.e., intensity, color, and purely
spatial oriented energies). Further, five recent and
state-of-the-art trackers are included to measure ab-
solute performance of the proposed trackers. Table 2
describes the sixteen trackers in more detail.

The systems that employed spatiotemporal oriented
energies (i.e., PW-SOE, Frag-SOE, and MS-SOE), all
utilized the same underlying features. Specifically,
SOEs were computed at 10 orientations, as they span
the space of 3D orientations for the highest order
filters that were used (i.e., H2). The particular ori-
entations selected were the normals to the faces of
an icosahedron, as they evenly sample the sphere.
For the trackers that operated upon purely spatial
oriented energies (i.e., PW-OE, Frag-OE, and MS-
OE), the features were computed at four orientations
(0◦, 45◦, 90◦, and 135◦), so as to span the space
of 2D orientations for the highest order filters. Both
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TABLE 2
Trackers used in empirical evaluation.

Tracker Description
PW-SOE Pointwise warp tracker with spatiotemporal ori-

ented energy features (Sec. 2.4).
PW-OE Pointwise warp tracker with purely spatial ori-

ented energy features.
PW-Int Pointwise warp tracker with intensity features.
Frag-SOE FragTrack system with spatiotemporal oriented

energy features (Sec. 2.3).
Frag-OE FragTrack system with purely spatial oriented

energy features.
Frag-Int FragTrack system with intensity features [22].
Frag-Color FragTrack system with color features [22].
MS-SOE Mean shift tracker with spatiotemporal oriented

energy features (Sec. 2.2).
MS-OE Mean shift tracker with purely spatial oriented

energy features.
MS-Int Mean shift tracker with intensity features [19].
MS-Color Mean shift tracker with color features [19].
IVT State-of-the-art incremental visual tracker [31].
MIL State-of-the-art multiple instance learning

tracker [12].
A-BHMC State-of-the-art adaptive basin hopping Monte

Carlo based tracker [32]. This tracker operates
on color features.

VTD-Int State-of-the-art visual tracking decomposition
system using intensity and edge features [33].

VTD-Color State-of-the-art visual tracking decomposition
system using hue, saturation, intensity, and
edge features [33].

spatial and spatiotemporal energies were computed
at a single scale, corresponding to direct applica-
tion of the oriented filters to the input imagery. The
intensity-based trackers (i.e., PW-Int, Frag-Int, and
MS-Int) operated directly on the greyscale video pix-
els. The color-based implementations (i.e., Frag-Color
and MS-Color) operated on the RGB color pixels and
formed RGB histograms. No color instantiation of the
PW type tracker is included, as use of color features
in that framework is uncommon.

Parameter settings for all systems were determined
empirically, such that tracking accuracy was opti-
mized. For the pointwise warp trackers, motion esti-
mation was performed using coarse-to-fine processing
operating over four levels of a Gaussian pyramid built
on top of the feature measurements. Template updates
were performed with a rate of αPW = 0.999.

The FragTrack systems employed a similar frag-
ment topology to that suggested in [22]. Template
updates used the setting αFrag = 0.99. Additionally,
a search radius of D = 45 pixels from the previous
target position was utilized and the s = 50th percent
quantile was used when selecting the fragment for use
in candidate comparisons, (10).

For the mean shift trackers, the system using SOEs
employed energy thresholds, Zθ, of 2.75× the mean
energy for each orientation channel. With spatial ori-
ented energies, best performance was found using
Zθ = 0; whereas this parameter is not relevant to
MS-Int since it operates on scalar features. Template
updates were set according to αMS = 0.85. Finally,

the Epanechnikov kernel was used and the maximum
number of mean shift iterations was set to twenty.

With regards to the recent state-of-the-art systems,
IVT [31], MILTrack [12], A-BHMC [32], and VTD-
Int/VTD-Color [33] parameters were assigned ac-
cording to the original authors’ suggestions or with
values that were experimentally validated as provid-
ing superior performance. All four of these state-of-
the-art trackers have been used extensively in em-
pirical evaluations, with particular emphasis on IVT,
MILTrack, and VTD-Int in most recent evaluations
(e.g., [70], [36], [17]). It should also be noted that this
evaluation considers implementations comparable to
the original mean shift [19] (MS-Int) and FragTrack
[22] (Frag-Int), which also are considered strong track-
ers, e.g. [15], [70]. For all trackers, parameters were
held constant throughout all experiments. Moreover,
all trackers were provided with identical first-frame
initializations, which were annotated by hand.

3.2 Qualitative results

Figure 3 displays qualitative tracking results for all
trackers that employed SOE features as well as the
three state-of-the-art systems that consider greyscale
features (i.e., IVT, MIL, and VTD-Int). Results for
the ten remaining trackers are suppressed here due
to space constraints; however, they are presented in
Section 3.3 when quantitative performance results
are analyzed. As the figure shows, for Occluded Face
2, PW-SOE, IVT, and VTD-Int provide comparable
qualitative results; whereas MIL becomes more poorly
localized during the later stages of the video. Al-
though VTD-Int provides a well-centered and well-
scaled track of the target throughout, this system
does not estimate rotation; thus, it does not accurately
capture the rotations as the target tilt’s his head in
Frame 424. Frag-SOE, MS-SOE, and MIL share this
limitation as they too do not estimate rotational target
motion. Finally, the collapsing of spatial arrangement
information in conjunction with a loose initial target
window limits the performance of both Frag-SOE and
MS-SOE. With such impoverished representations of
spatial layout information, clutter in the background
is easily confounded with the true target.

In Tiger 2, MIL and Frag-SOE provide the best
tracking accuracy throughout. Both trackers make
use of a “spotting approach”, where an exhaustive
search is performed within a search radius, which is
better-suited for following targets moving at extreme
velocities. In contrast, PW-SOE struggles somewhat
relative to MIL and Frag-SOE because the small target
combined with rapid motion makes it difficult for
the employed coarse-to-fine, gradient-based motion
estimator to obtain accurate updates. The result for
PW-SOE is that it lags behind during the fastest mo-
tions; although, it “catches-up” throughout. The VTD-
Int system initially offers competitive performance to
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MIL and Frag-SOE, but it loses the target at Frame 280
and never reacquires it. Further, the reduced discrimi-
native power offered by the histogram representation
used in MS-SOE again limits its performance. Thus,
the mean shift system is often attracted to background
clutter (e.g., Frame 74), but it nonetheless tends to lock
back on to the target eventually (e.g., Frame 222). For
this video, IVT offers worst performance, as it falls
off target early in the sequence (approximately Frame
100) and does not reacquire the target.

In Sylvester, both Frag-SOE and IVT experience
complete tracking failures early in the sequence. For
Frag-SOE, an abrupt change in velocity accompanied
by an appearance change (resulting from a slight
target rotation) was sufficient to disrupt tracking. On
the other hand, IVT lost the target slightly later,
when it suddenly rotates toward the camera (rapid
appearance change). MIL follows the target through-
out the entire sequence, but at times the lighting and
appearance changes (due to out-of-plane rotations)
move the tracking window partially off-target. MS-
SOE also tracks the target throughout the sequence,
but allows its tracking window to grow gradually too
large due to a relatively unstructured background and
no notion of target spatial organization. The VTD-Int
system provides an accurate target track throughout
the majority of the video but experiences a complete
tracking failure at Frame 1095 when the target under-
goes a dramatic out-of-plane rotation from which it
never recovers. Finally, PW-SOE performs best due to
the robustness of its pointwise features to illumination
changes and their ability to capitalize on motion
information when appearance varies rapidly.

For the Illumination sequence, all three SOE-based
systems display accurate and comparable tracking ac-
curacy throughout, due to the robustness of this rep-
resentation to illumination changes, as discussed in
Section 2.1. The performance of IVT, MIL, and VTD-
Int suffers in this sequence, due to the extreme light-
ing effects and lack of robustness to such challenges in
the representations that are utilized. Specifically, IVT
loses the target at Frame 13, when it emerges from
the shadows; while MIL and VTD-Int hold on longer,
they also fail when the target reenters the shadows. It
appears that the Haar-like features used in MIL and
the inclusion of edge features in VTD-Int lead to some
limited robustness to illumination effects. Nonethe-
less, neither of these common feature representations
is able to outperform the proposed SOE features with
respect to the challenge of illumination changes.

In the PETS video, incorporating limited amounts
of spatial organization information proves to be ad-
vantageous when the target is very small. In this
case, the two SOE-based systems that perform some
amount of spatial aggregation, Frag-SOE and MS-
SOE, provide accurate tracking of the cyclist target
until the end of the video. PW-SOE, IVT, MIL, and
VTD-Int do not consider such spatial aggregation

and all lose track of the target early in the sequence
when the cyclist is partially occluded by a pedestrian.
Interestingly, MIL appears to learn the appearance of
the pedestrian and begins to track him or her as the
sequence progresses (e.g., Frame 83).

Next, for the Ming video, PW-SOE, IVT, and
VTD-Int provide comparably excellent target tracks
throughout. In contrast, MS-SOE and MIL are able
to follow the target to the completion of the video,
but offer significantly inferior localization accuracy as
compared to the top performers. Specifically, MS-SOE
moves partially off target early in the sequence and
allows the tracking window to grow much larger to
incorporate more of the face and background than
present in the initial template. Similarly, MIL drifts
part-way off the individual’s face at roughly Frame
225 and only provides coarse target localization there-
after. Additionally, MIL does not properly capture the
scale changes as the distance from target to camera
changes (e.g., Frame 925). Finally, the Frag-SOE strug-
gles with this sequence in a similar manner to what
transpired for Sylvester. Specifically, the target exhibits
limited interframe motion and numerous changes in
velocity. These weak and inconsistent velocity cues
combined with a face target that is less distinct under
local accumulation leads the tracker to seek matching
regions on the untextured background.

For the challenging Woman sequence, of all the SOE-
based and state-of-the-art systems considered in this
qualitative analysis, only PW-SOE is capable of track-
ing the target throughout. The tracker is successful de-
spite a moving camera in addition to extended partial
occlusions with vehicles that share similar colors to
the target itself. Although the track provided by PW-
SOE is imperfect due to some unnecessary shearing
of the crop box region, its performance is far superior
to any of the alternatives, which all fall off the target
by Frame 30 during the first partial occlusion.

In the Car11 sequence, a moving camera is again
encountered and this challenge causes Frag-SOE to
fail early in the sequence and become attracted to
other moving regions in the background with car tail-
light type appearances (e.g., Frame 200). The next
tracker to experience difficulty is MIL, which begins
to gradually drift off target starting around Frame
70 and eventually ends up in the oncoming lanes of
traffic. MS-SOE and VTD-Int are the next trackers to
drift off target at Frame 240 when the target begins
to turn to the right around a corner. Only PW-SOE
and IVT are capable of tracking the car target with
comparable accuracy until the end of the sequence.

Finally, in Pop Machines, since the two individuals
within the scene look very similar and walk closely
to one another, MIL has difficulty distinguishing be-
tween them. For much of the video sequence, both
MIL tracking windows are following the same indi-
vidual. Additionally, MS-SOE succeeds at following
one target to the end of the sequence, while IVT and
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VTD-Int cannot surmount the full occlusions caused
by the foreground pillar for either target. Only the
feature representations used by PW-SOE and Frag-
SOE that encompass both target dynamics and spatial
organization allow for the differentiation between the
two targets and success throughout this video.

In comparing the performance of the systems that
employed the proposed SOE feature representation,
the tradeoffs in maintaining spatial organization in-
formation (provided by PW-SOE, partially kept in
Frag-SOE, and completely discarded in MS-SOE) are
well documented. Frag-SOE and MS-SOE show a
tendency to drift onto non-target locations that share
similar feature characteristics with the target when
aggregated over large support regions (e.g., occluding
book and background computer monitor in Occluded
Face 2, unstructured background in Sylvester, moving
background regions in Car11). In contrast, PW-SOE
does not exhibit these problems, as it maintains com-
plete spatial organization of the features via its point-
wise representation and the targets are distinguished
from the non-target locations on that basis. On the
other hand, the accumulation of feature information
over a larger region did yield benefits when tracking
very small targets, as demonstrated by the success
of Frag-SOE and MS-SOE on the PETS sequence.
In contrast, PW-SOE failed to track the target due
the limited number of true target pixels within the
tracking window, which is reduced further during the
partial occlusion by the pedestrian. It appears that dif-
ferent tracking architectures may be more appropriate
for specific scenarios, but the proposed SOE features
provide a suitable base representation throughout.

3.3 Quantitative results

To evaluate the SOE-based systems versus other state-
of-the-art algorithms and systems employing alterna-
tive feature representations, comparisons with ground
truth data were made. Two standard metrics for
single target visual tracking were used: the center
location error (CLE) and the percentage of frames
correctly tracked, given as VOC success rate (VOC-
SR). The CLE computes the mean Euclidean distance
between the ground truth center of mass and those
provided by the various tracking systems across all
video frames to yield an overall measure of tracking
accuracy. VOC-SR is a measure based on the PASCAL
VOC challenge [71]. For a given frame, the target
is considered to be correctly tracked if its overlap
with the ground truth bounding box is at least 50%,
yielding an indication of the video percentage that
tracking was “unsuccessful”, due to poor localization
or complete failure. These two complementary metrics
were recently proposed for performance evaluation
for the single target tracking problem [15] and have
since been adopted as a standard for many recent
evaluations [70], [36], [17].

Summary statistics using these two evaluation cri-
terion are presented in Table 3 for all sixteen trackers
listed in Table 2. Color-based trackers were restricted
to the four sequences that had RGB data available.
Since MIL, A-BHMC, and VTD-Int/VTD-Color are
stochastic algorithms, they were executed five times
and their errors averaged [12].

Absolute Performance. In considering Table 3, a
number of meaningful trends can be observed. The
top performers appear to be the trackers that leverage
the spatiotemporal oriented energy representation,
i.e., PW-SOE, Frag-SOE, MS-SOE as well as two of
the state-of-the-art systems, IVT and MIL. Overall,
the top performing tracker is the PW-SOE system, at-
taining best performance on three videos and second
best on four videos under the CLE metric, as well as
three best and one second best ratings under the VOC-
SR measure. IVT is arguably the tracker that performs
second best overall, achieving best performance on
three videos under both evaluation criterion. Interest-
ingly, whenever PW-SOE is outperformed by IVT, it
was by a relatively small amount (i.e., 2.5 pixels for
Occluded Face 2, 0.2 pixels for Ming, and 0.1 pixels for
Car11 under the CLE metric). In contrast, when PW-
SOE excelled, IVT tended to experience more signifi-
cant failures (e.g., Sylvester, Illumination, Pop Machines,
and Woman). Further, in terms of the CLE and VOC-
SR rankings, Frag-SOE, MS-SOE and MIL perform
relatively on par, and are the best performers after
PW-SOE and IVT. Thus, of the top five performers,
three are SOE-based algorithms.

The additional state-of-the-art systems beyond IVT
and MIL were less successful. The recent A-BHMC
system did not offer a precise track for any sequence.
VTD-Int and VTD-Color were able to significantly
outperform A-BHMC, but the overall tracking accu-
racy of VTD-Int was otherwise not one of the best
performers.

Given that the proposed SOE representation en-
compasses both appearance and dynamics, one might
conjecture that for scenarios involving moving cam-
eras, the SOE-based trackers will fail. Interestingly, the
results in Table 3 for the two sequences with moving
cameras, Woman and Car11, reveal that SOEs actually
can perform very well with non-stationary cameras. In
fact, for videos with smooth camera motion (panning,
zooming, and looming) the PW-SOE system demon-
strates that it can attain best and second best tracking
accuracy amongst all 16 algorithms tested. However,
it does appear that the inclusion of spatial layout
information offered by the PW paradigm is critical for
success when directly using SOE features that have
been computed from the raw imagery. In particular,
Frag-SOE and MS-SOE perform feature aggregation
over larger spatial support regions, allowing them to
be attracted to the clutter in the moving background
more easily and eventually drift off target. Along
these lines, an interesting direction for future research
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Fig. 3. Qualitative tracking results for the test suite of videos. From top to bottom, left to right, the videos displayed
are Occluded Face 2, Tiger 2, Sylvester, Illumination, PETS, Ming, Woman, Car11, and Pop Machines. Red,
yellow, cyan, green, purple, and blue boxes correspond to tracking results for PW-SOE, Frag-SOE, MS-SOE,
IVT, MIL, and VTD-Int respectively. For the Pop Machines video, two human targets are tracked where the
results for the person starting on the right are shown with solid crop boxes and those for the person starting on
the left are denoted via dashed boxes.

would be to explore the utility of image stabilization
[72] as a preprocessing stage for Frag-SOE and MS-
SOE to ameliorate the impact of camera motion.

Another interesting observation from the Car11
video is that performance between PW-SOE and PW-
OE are extremely comparable. The explanation is that
when camera motion is present in a video, the target
motion may become a less reliable component of the
SOE representation; significantly, however, the PW-
SOE tracker automatically still exploits the spatial
appearance aspects of the SOEs to maintain good
performance in such situations. Presumably, similar
success was not achieved with the PW-OE tracker
on the Woman sequence due to the highly non-rigid
nature of the target. In this case, the SOE tracker
is able to capitalize on the distinctive target motion
information even in the presence of camera motion to
achieve best results.

Performance vs. Feature Representation. An inter-
esting trend observable from Table 3 with respect to
features is that when holding the tracking paradigm
constant (i.e., either PW, Frag, or MS architectures)

and comparing the performance offered by the four
different representations (i.e., SOE, OE, intensity, or
color), SOEs generally outperform the alternatives.
Specifically, SOEs demonstrated superior performance
to the alternatives for 46 out of 62 comparisons for the
CLE metric and 43 out of 62 comparisons for VOC-SR.
This trend can also be observed in Table 3 by noting
that the SOE variants of these tracking architectures
achieve the most best and second best performance
ratings on videos, as compared to their counterparts.
Specifically, across all tracking paradigms and both
metrics, SOE-based systems attained 22 bests or sec-
ond bests, intensity-based systems yielded 4, while all
other features had none.

Outside of the SOE-based systems, the only tracker
that employs one of these paradigms and attains rea-
sonable overall tracking accuracy is Frag-Int (second
best performance on two videos under both metrics).
This result is not surprising, as Frag-Int is a modern
tracking architecture that was recently considered to
be state-of-the-art [22] and is still used as a common
baseline for comparison, e.g., [15], [70], [17].
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Additional observations can be made regarding
the feature representations when considering the PW,
Frag, and MS paradigms in more detail. For instance,
Table 3 reveals that illumination changes are prob-
lematic for the pure intensity features, as can be
seen in the results for Illumination, which offer poor
performance in the intensity-based variants of these
algorithms. Bandpass filtering, (1), and normalization,
(2), allow all SOE-based systems to track, relatively
unaffected, through the pronounced illumination vari-
ations. Systems based on spatial oriented energies,
although robust to illumination changes, are not suf-
ficiently rich to track in this challenging sequence.

The Tiger 2 video demonstrates that the purely
spatially-based features (both raw intensity and spa-
tial orientation) can be distracted easily by compli-
cated cluttered scenery, especially when the target
undergoes a slight change in appearance (e.g., partial
occlusion by foliage, motion blur, opening of tiger’s
mouth). The addition of motion information in the
SOE-based systems provides added discriminative
power to avoid being trapped by clutter, leading to
superior performance over the competing representa-
tions within the same tracking paradigm.

Also of interest is that when tracking extremely
small targets in the PETS video, the richness of the
SOE representation, capturing both appearance and
dynamics, is required for success. The alternative
representations that consider only appearance are not
sufficient to follow such a small target, resulting in
poor performance within every tracking paradigm.

Additionally, in Pop Machines the SOE representa-
tion is able to achieve success where the alternatives
at least partially lose track of both targets. In this
case, motion information is critical in distinguishing
the targets, given their similar appearance. Relative
success is had with the proposed SOE features within
all tracking architectures, even as the targets cross
paths and with the pillar providing further occlusion.

As the SOE features are computed from inten-
sity images, it is important to include comparisons
against color-based algorithms to ensure that omitting
this potential source of information does not lead to
significant performance degradation. The results in
Table 3 indicate that inclusion of color information
is not required to achieve high quality tracker output,
nor does it guarantee that the resulting tracker will
be robust. Indeed, in the entire evaluation, none of
the color-based trackers achieved best or second best
performance for any of the videos. Along these lines,
it is of special interest to compare the performance of
the Frag, MS and VTD trackers when the feature rep-
resentation was changed from color to intensity. Here,
the results show that overall tracking performance
remains fairly comparable when switching between
color and intensity within a paradigm. Frag-Color
sees the most advantage in employing color, but still
does not become competitive with the top performers.

Overall, comparisons of the various feature rep-
resentations show that tracking performance is very
sensitive to which features are employed, even when
other components of the tracker are held constant. The
specific choice of feature representation is critical in
overcoming certain challenges in tracking including,
illumination changes, clutter, occlusion, appearance
changes, and multiple targets with similar appear-
ance. Generally, the proposed spatiotemporal oriented
energy features offer superior tracking accuracy over
extant features with respect to these challenges.

In summary, the empirical evaluation has demon-
strated three main findings regarding the 16 trackers
that were compared. (i) One of the proposed track-
ers, PW-SOE, provides overall best tracking accuracy
and outperforms the state-of-the-art systems on the
test suite. The two additional SOE-based systems
Frag-SOE and MS-SOE, demonstrated overall perfor-
mance within the top five trackers and outperformed
several strong baselines. These results indicate that
SOE features can be used for tracking to attain state-
of-the-art accuracy. (ii) SOE features have been experi-
mentally validated as being amenable and effective in
three distinct region tracking paradigms that main-
tain varying amount of spatial layout information,
illustrating the representation’s flexibility and breadth
of applicability. (iii) The richness combined with the
robustness to illumination allowed the proposed SOE
representation to outperform the alternative intensity,
color, and spatial orientation features. In a direct
comparison, the SOE features outperformed some of
the most commonly-used features in tracking today
with respect to several of the outstanding challenges
in visual tracking.

4 DISCUSSION AND SUMMARY
The main contribution of this paper is the novel
application of a spatiotemporal oriented energy rep-
resentation to the field of visual tracking. The energy-
based representation is shown to be effective and
broadly applicable in a range of representative re-
gion trackers that incorporate differing amounts of
target spatial layout information during tracking. The
proposed SOE representation uniformly captures both
the spatial and temporal characteristics of a target
while remaining robust to illumination. The feature
set is uncommonly rich, supporting tracking through
appearance and illumination changes, erratic target
motion, moving cameras, complicated backgrounds,
and occlusions. Indeed, in empirical comparisons to
alternative commonly employed features and extant
state-of-the-art trackers, the proposed approach has
been shown to yield exceptionally strong performance
in response to such challenges.
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TABLE 3
Summary of quantitative results for all 16 trackers. Each entry in the table is in the format CLE (pixels) /

VOC-SR (%). Green and red indicate best and second best performance, respectively.

Algorithm Occl. Tiger 2 Sylv. Illum. PETS Ming Woman Car11 Pop
Face 2 Mach.

PW-SOE 8.5/90.2 21.8/21.1 8.2/88.6 8.2/96.7 35.0/15.6 3.3/98.3 11.1/73.2 2.6/90.8 16.0/40.1
PW-OE 18.2/57.7 32.5/15.5 81.2/36.5 116.0/10.0 36.3/8.9 3.9/96.6 113.6/21.1 3.3/84.2 86.7/6.2
PW-Int 27.2/50.3 46.2/15.5 50.6/35.7 91.1/33.3 48.8/4.4 12.7/59.7 93.7/16.9 35.8/48.7 41.7/24.3

Frag-SOE 54.1/27.6 17.5/43.7 82.3/0.8 7.3/93.3 2.7/62.2 127.4/0.7 131.5/2.4 88.6/2.6 16.9/41.9
Frag-OE 37.1/47.2 31.2/19.7 65.9/22.8 122.1/13.3 35.2/22.2 99.5/13.9 126.0/6.0 31.0/69.7 48.3/38.5
Frag-Int 20.0/68.1 74.8/18.3 9.2/81.0 113.2/33.3 44.9/26.7 10.5/69.2 80.8/25.9 44.8/15.8 105.4/18.5

Frag-Color — — — 12.2/83.3 20.8/17.8 — 128.1/0.4 22.0/31.6 —
MS-SOE 77.2/1.2 30.9/16.9 18.4/22.1 8.5/96.7 3.2/77.8 34.3/0.3 133.8/1.6 20.8/55.3 29.28/45.2
MS-OE 78.2/1.8 77.2/1.4 23.4/40.3 136.4/3.3 49.1/4.4 13.9/55.3 94.0/35.0 26.2/13.2 114.3/6.2
MS-Int 29.4/42.3 47.6/4.2 24.5/27.0 51.9/36.7 49.2/4.4 20.3/32.5 140.3/3.5 28.6/39.5 107.2/11.3

MS-Color — — — 124.4/10.0 50.0/6.7 — 136.2/0.2 26.9/23.7 —
IVT 6.3/98.2 38.7/21.1 91.7/44.1 115.3/16.7 43.0/20.0 3.1/99.7 269.2/3.8 2.5/100.0 55.8/32.7
MIL 19.0/86.7 11.2/61.4 13.1/68.4 28.2/62.7 27.7/18.7 18.7/36.3 137.1/4.4 40.9/18.7 38.6/60.8

A-BHMC — — — 95.5/8.7 40.6/1.3 — 82.4/0.5 38.9/5.3 —
VTD-Int 9.8/97.7 22.5/40.0 15.9/79.6 28.8/28.7 31.6/24.0 4.1/98.7 132.6/4.6 22.7/60.3 55.2/32.4

VTD-Color — — — 34.5/26.7 31.8/26.2 — 135.6/4.3 28.3/56.6 —
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