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Abstract. The detection of motion boundaries has been and remains a long-
standing challenge in computer vision. In this paper, the recovery of motion
boundaries is recast in a broader scope, as focus is placed on the more general
problem of detecting spacetime structure boundaries, where motion boundaries
constitute a special case. This recasting allows uniform consideration of bound-
aries between a wider class of spacetime patterns than previously considered in
the literature, both coherent motion as well as additional dynamic patterns. Ex-
amples of dynamic patterns beyond standard motion that are encompassed by the
proposed approach include, flicker, transparency and various dynamic textures
(e.g., scintillation). Toward this end, a novel representation and method for de-
tecting these boundaries in raw image sequence data are presented. Central to the
representation is the description of oriented spacetime structure in a distributed
manner. Empirical evaluation of the proposed boundary detector on challenging
natural imagery suggests its efficacy.

1 Introduction

The detection of motion boundaries in (temporal) image sequences has been and re-
mains a longstanding challenge in computer vision. The reason for continued interest is
due in part to their providing boundary conditions for any process that requires knowl-
edge of the spacetime support of coherent data for recovery of reliable local estimates
(e.g., optical flow). In addition, these boundaries provide useful information about the
3D structure of the imaged scene.

Although of obvious importance, motion represents a particular instance of the myr-
iad spatiotemporal patterns encountered in image sequences. Examples of non-motion-
related patterns of significance include, unstructured (e.g., “blank wall”), flicker (i.e.,
pure temporal intensity change), and dynamic texture (e.g., as typically associated with
stochastic phenomena, such as windblown vegetation and turbulent water). These types
of dynamic patterns have received far less attention than motion in the literature.

The goal of the present work is the development of a unified approach to detecting
spacetime boundaries that is broadly applicable to the diverse phenomena encountered
in the natural world, including but not limited to motion. It is proposed that the choice of
representation is key to meeting this challenge: If the representation cannot adequately
distinguish the patterns of interest, then the recovery of boundaries, regardless of the
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chosen detector, will fail. For present purposes, local 3D, (x, y, t), spacetime orienta-
tion will be shown to be of appropriate descriptive power. Measures of spatiotemporal
orientation capture the first-order correlation structure of the data irrespective of its
origin (e.g., irrespective of its physical cause), even while distinguishing a wide range
of patterns of interest (e.g., different motions, as well as the various aforementioned
additional dynamic patterns). With visual spacetime represented according to its lo-
cal orientation structure, boundaries will be extracted via detection of spatiotemporal
change in the local orientation structure.

Previous dynamic boundary detection methods can be categorized as either local or
global. Local methods restrict analysis to limited neighbourhoods around each point. In
contrast, global methods generally attempt to simultaneously estimate a consistent flow
field and its discontinuities across the image.

Early efforts focused on the local detection of motion discontinuities in dense op-
tical flow fields through the use of edge operators (e.g., [1]). Alternatively, regions ex-
hibiting a high percentage of unmatched features on a frame-to-frame basis are identi-
fied as motion boundaries [2]. Other methods have detected boundaries from the shape
of the local template match surface (e.g., [3]). Boundary detection also has been per-
formed using a detector over basis flows for simple events (e.g., motion of occluding
edge or bar) [4]. In follow-up work, motion discontinuity regions were captured using
a non-linear generative model [5]. Alternatively, hand-labeled motion boundaries have
been used to train a discriminative classifier [6]. Further, motion boundary detection has
been based on analysis of local distributions of image features (e.g., intensity, colour,
flow) [7,8]. Perhaps most closely related to the approach proposed here are methods
that detect motion boundaries from the structure of spatiotemporal brightness patterns
as captured by local estimates of spatiotemporal orientation [9] or, more generally, ori-
ented bandpass filters [10,11]. Also related are previous efforts using oriented energy
measurements for boundary detection in 2D intensity images, e.g., [12,13].

Typically, the focus of global methods has been the recovery of regional flows,
with inter-region boundaries made explicit to various degrees [14,15]. The particular
formulations developed in these cases are limited to motion boundary detection and not
more generally applicable to additional classes of spatiotemporal structure boundaries.
Alternatively, global methods have been developed that indicate regions of dynamic
texture and their boundaries, e.g., [16]; however, it does not appear that such methods
are applicable directly to motion boundaries.

Overall, it appears that no single previous method for spatiotemporal boundary de-
tection is capable of capturing the wide range of juxtaposed spacetime patterns encoun-
tered in the real world. Furthermore, the emphasis of most previous work has been on
the special case of motion boundaries.

In the light of previous research, the following three major contributions are made.
(i) The problem of detecting motion boundaries is recast in terms of the more general
problem of identifying spacetime structural boundaries. This recasting allows for cap-
turing, in a unified manner, boundaries between a wide range of important spatiotem-
poral patterns (unstructured, static, motion, flicker, (pseudo-)transparency, translucency,
scintillation). (ii) A new representation is proposed for identifying spatiotemporal bound-
aries that captures local 3D, (x, y, t), image spacetime orientation structure in a distrib-
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uted manner. The representation converts structure differences to spatiotemporal con-
trast; correspondingly, simple contrast detection mechanisms (e.g., local differential op-
erators) can mark boundaries. (iii) The proposed boundary detector’s ability to identify
boundaries along meaningful structural lines is shown quantitatively and outperforms
several extant approaches on a wide range of challenging natural imagery.

2 Technical approach

The proposed approach to spacetime representation and boundary analysis consists of
an initial local oriented decomposition of the input video, followed by detecting space-
time structural boundaries across the decomposition. This approach is motivated by the
fact that such a decomposition captures significant, meaningful aspects of its temporal
variation [11]. As examples: A significant response in a single component of the de-
composition is indicative of motion; significant responses in multiple components of
the decomposition are indicative of transparency-based superposition; more uniform,
yet still significant responses across the entire decomposition are indicative of dynamic
texture (e.g., scintillation); lack of response in any component of the decomposition is
indicative of unstructured regions (e.g., uniform intensity). Under this representation,
coherency of spacetime is defined in terms of consistent patterns across the decom-
position, while inconsistencies indicate spacetime structural boundaries. Integration of
purely spatial cues (e.g., colour and texture), although of obvious benefit, is beyond the
scope of this contribution.

2.1 Spatiotemporal oriented energy representation

The spacetime orientation decomposition is realized using broadly tuned 3D Gaussian
second derivative filters, G2θ̂

(x, y, t), and their Hilbert transforms, H2θ̂
(x, y, t), with

the unit vector θ̂ capturing the 3D direction of the filter symmetry axis. The responses
are pointwise rectified (squared) and summed to yield the following energy measure,

Eθ̂(x, y, t) = (G2θ̂
∗ I)2 + (H2θ̂

∗ I)2, (1)

where I ≡ I(x, y, t) denotes the input imagery and ∗ convolution.
Each oriented energy measure, (1), is confounded with spatial orientation. Conse-

quently, in cases where the spatial structure varies widely about an otherwise coherent
dynamic region (e.g., single motion of a surface with varying spatial texture), the re-
sponses of the ensemble of oriented energies will reflect this behaviour and thereby
support spurious region segregation. To ameliorate this difficulty, the spatial orientation
component is discounted by “marginalization” of this attribute, as follows.

In general, a pattern exhibiting a single spacetime orientation (e.g., velocity) mani-
fests itself as a plane through the origin in the frequency domain [17]. Correspondingly,
summation across a set of x-y-t-oriented energy measurements consistent with a single
frequency domain plane through the origin is indicative of energy along the associated
spacetime orientation, independent of purely spatial orientation. Since Gaussian deriv-
ative filters of order N = 2 are used in the oriented filtering, (1), it is appropriate to
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consider N + 1 = 3 equally spaced directions along each frequency domain plane of
interest, as N + 1 directions are needed to span orientation in a plane with Gaussian
derivative filters of order N [13]. Let each plane be parameterized in terms of its unit
normal, n̂; a set of equally spaced N + 1 directions within the plane are given as

θ̂i = cos
(

2πi

N + 1

)
θ̂a(n̂) + sin

(
2πi

N + 1

)
θ̂b(n̂), 0 ≤ i ≤ N, (2)

with
θ̂a(n̂) = n̂× êx/‖n̂× êx‖ and θ̂b(n̂) = n̂× θ̂a(n̂), (3)

where êx denotes the unit vector along the ωx-axis1. In the case where the space-
time orientation is defined by velocity (ux, uy), the normal vector is given by n̂ =
(ux, uy, 1)>/‖(ux, uy, 1)>‖.

Now, energy along a spacetime direction, n̂, with spatial orientation discounted
through marginalization, is given by summation across the set of measurements, Eθ̂i

,

Ẽn̂(x, y, t) =
N∑

i=0

Eθ̂i
(x, y, t), (4)

with θ̂i one of N + 1 = 3 specified directions, (2), and each Eθ̂i
calculated via the ori-

ented energy filtering, (1), (cf. [18] where a similar formulation is developed, but only
applied to image motion analysis and without inclusion of the H2θ, which provides
phase independence). In the present implementation, six different spacetime orienta-
tions are made explicit, namely, leftward, rightward, upward and downward motion,
static (no motion/orientation orthogonal to the image plane) and flicker/infinite motion
(orientation orthogonal to the temporal axis); although, due to the broad tuning of the
filters employed, responses arise to a range of orientations about the peak tunings.

Finally, the resulting energies in (4) are confounded by the local contrast of the
signal and as a result increase monotonically with contrast. This makes it impossible to
determine whether a high response for a particular spacetime orientation is indicative
of its presence or is instead a low match that yields a high response due to significant
contrast in the signal. To arrive at a purer measure of spacetime orientation, the energy
measures are normalized by the sum of consort planar energy responses at each point,

Ên̂i
(x, y, t) = Ẽn̂i

(x, y, t)/
( M∑

j=1

Ẽn̂j
(x, y, t) + ε

)
, (5)

where M denotes the number of spacetime orientations considered, and ε a constant in-
troduced as a noise floor and to avoid instabilities at points where the overall energy is
small. Conceptually, (1) - (5) can be thought of as taking an image sequence, I(x, y, t),
and carving its (local) power spectrum into a set of planes, with each plane correspond-
ing to a particular spacetime orientation, to provide a relative indication of the presence
of structure along each plane.

1 Depending on the spacetime orientation sought, êx can be replaced with another axis to avoid
the case of an undefined normal vector.
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The constructed representation enjoys a number of attributes that are worth empha-
sizing. (i) Owing to the bandpass nature of the Gaussian derivative filters (1), the repre-
sentation is invariant to additive photometric bias. (ii) Owing to the normalization (5),
the representation is invariant to absolute contrast in the input signal. (iii) Owing to the
marginalization (4), the representation is invariant to changes in appearance manifest as
spatial orientation variation. Overall, these three invariances result in robust boundary
detection that is invariant to pattern changes that do not correspond to dynamic pattern
variation, even while making explicit local orientation structure that arises with tem-
poral variation (motion, flicker, scintillation, etc.). (iv) The representation is efficiently
realized via linear (separable convolution, pointwise addition) and pointwise non-linear
(squaring, division) operations [19].

2.2 Anisotropic smoothing

Prior to attempting to mark loci of significant spatiotemporal boundaries in the oriented
energy decomposition, it is appropriate to smooth the derived representation to suppress
noise. For this purpose, an anisotropic smoothing is performed as it serves to attenuate
noise while enhancing structural boundaries. In the current implementation, mean-shift
is employed as the anisotropic smoothing operation [20]. To promote spatiotemporal
coherence at the smoothing stage, the orientation feature-space is augmented with po-
sitional information in the form of spacetime coordinates, (x, y, t). Putting the above
features together yields a 9D feature vector (six oriented energies plus three for space-
time location), per image point.

Conceptually, mean-shift regards the feature-space as an empirical distribution. Each
feature-point is associated with a mode (local maximum) of the distribution and thereby
all points associated with a particular mode share a common feature value. In its sim-
plest formulation (i.e., based on the Epanechnikov kernel), the mean-shift property can
be written as (see [20], for details)

∇̂f(xc) ∝
(

mean
xi∈Sh,xc

{xi} − xc

)
, (6)

where f(x) denotes the underlying probability density function of a n-dimensional
space, x, {xi} the given set of samples, and Sh,xc

a n-dimensional hyper-ball with
radius h (the so-called kernel density bandwidth) centered at xc. Repeated application
of (6) converges to a local mode of the distribution. In the present case, modes arise
as particular values across 9D spatiotemporal feature vectors, x. The final smoothed
energy representation is realized by assigning the converged oriented energy portion of
the feature vectors to their respective initial spacetime positions.

2.3 Spatiotemporal structure boundaries

In essence, the oriented energy representation converts spacetime structure differences
to intensity differences across its decomposition. Correspondingly, boundaries simply
correspond to image loci exhibiting significant spatiotemporal contrast in the represen-
tation. Figure 1 illustrates this point. In the orientation decomposition, it is seen that the
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foreground tree yields relatively large and small intensities in the “static” and “right-
ward” components (resp.); whereas, the moving background yields the opposite behav-
iour. Therefore, spatiotemporal change (i.e., contrast) in the decomposition is indicative
of the boundary between the tree and background. More generally, the orientation de-
composition is a multivalued image, with spatiotemporal contrast indicative of space-
time boundaries in the underlying data. Here, it is interesting to note the difference
in the behaviour of flow estimates and the proposed distributed representation across
boundaries. In the former, the results are unpredictable due to a total failure of its in-
trinsic assumptions (e.g., brightness conservation). In the latter, due to the considerable
overlap in spacetime and orientation tuning of the filters, the representation changes
smoothly across structure boundaries reflecting the shift of energies among channels.

To capture the spatiotemporal contrast in the (smoothed) oriented energy represen-
tation, (5), a generalized gradient formulation is employed, as it captures change in a
uniform manner across the multiple components of the decomposition. Let Êk be the
kth band of the oriented energy representation, (5), and ξi = x, y, t for i = 1, 2, 3, resp.,
define the directions along which partial derivatives are taken, then the generalized gra-
dient is a 3× 3 matrix S where

Sij ≡
n∑

k=1

(∂Ên̂k
/∂ξi)(∂Ên̂k

/∂ξj). (7)

Notice that S amounts to the summation of the more standard structure/gradient tensor
[21] of each energy band2. The eigenvector of (7) associated with the greatest eigen-
value, λ1, denoted e1, points in the direction of greatest change in the feature-space. For
multivalued images (i.e., n > 1), a boundary is not indicated simply by a large value
for λ1; instead, it must be large relative to the other eigenvalues of S [22]. Correspond-
ingly, a normalized measure of spacetime structure boundary salience is employed in
the present context

boundarysalience = (λ1 − λ2)/(λ1 + λ2 + φ), (8)

where λ1 > λ2 denote the two largest eigenvalues of S and φ is a constant introduced
as a noise floor. High values of the boundary salience measure, (8), (i.e, values close
to one), are indicative of the presence of a spacetime structure boundary. Boundary
salience for the example in Fig. 1 is shown in its rightmost panel. Next, similar to
the non-maximum suppression principle used in intensity-based edge detection [24], a
candidate boundary point is defined as a point that achieves a maximum in boundary
salience, (8), in the direction of the eigenvector e1, as follow,

∂boundarysaliency

∂e1
= 0

∂2boundarysaliency

∂e2
1

< 0
. (9)

Finally, candidate loci having a saliency value greater than a certain threshold, τ , are
marked as boundary points.

2 Other adaptations of the generalized gradient to multiband image boundary detection include
application to colour [22] and spatial texture [23].
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Fig. 1. Oriented energy decomposition maps structural differences to intensity differ-
ences. (left) Input image sequence of a foreground tree tracked (stabilized) by a moving
camera with background in relative motion. (middle) Oriented energy decomposition
of input shows marked differences in intensity corresponding to dynamic pattern dif-
ferences of foreground vs. background. (right) Boundaries marked according to spa-
tiotemporal contrast across the energy decomposition.

2.4 Algorithm

To recapitulate, the proposed approach can be given in algorithmic terms as follows.

Input: Greyscale image sequence
Input parameter: Boundary detection threshold, τ
Output: Binary image sequence marking spatiotemporal structure boundaries

Step 1: Compute spacetime oriented energy representation (Section 2.1)
1. Initialize 3D G2/H2 steerable basis.
2. Compute normalized spacetime oriented energy measure, Eqs. (1)-(5).

Step 2: Anisotropic smoothing: Mean-shift (Section 2.2)
1. Augment each normalized spacetime oriented energy measure, (5), with its

spacetime coordinate (x, y, t).
2. Apply mean-shift smoothing iterations, (6).
3. Replace each energy measure in (5) with the final converged energy measure.

Step 3: Compute spatiotemporal structure boundary salience (Section 2.3)
for each spacetime point
1. Construct generalized gradient, (7), from (smoothed) oriented energy represen-

tation, (5).
2. Compute the eigenvector/eigenvalues of the generalized gradient, (7).
3. Compute boundary salience, (8).

Step 4: Non-maximum suppression (Section 2.3)
for each spacetime point
1. Apply non-maximum suppression, (9).
2. Retain candidate boundaries that have a saliency value, (8), greater than τ .

3 Empirical evaluation

In evaluation, parameter settings for the proposed detector are as follows. The ε bias for
contrast normalization, (5), empirically has been set to≈ 1% of the maximum expected
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response. The noise floor, φ, for boundary salience, (8), empirically has been set to φ =
0.01. Mean-shift (anisotropic) smoothing includes three bandwidth parameters, hspace,
htime and hrange, which determine the resolution of detail along the spatial, temporal
and range (here, spacetime orientation) dimensions, resp. Unless otherwise stated, the
mean-shift bandwidths are set to: hspace = 32, htime = 10, and hrange = 0.12.

Figure 4 shows a set of challenging natural image sequences containing a broad
range of juxtaposed spacetime structures, including but not restricted to motion, and
their boundary detection results (see caption for description of inputs). The challeng-
ing aspects of this data set include, regions that are unstructured, exhibit significant
temporal aliasing due to fast motion, contain superimposed motion (transparency) and
non-motion structure (e.g., flicker and scintillation). Coherent motion boundaries con-
stitute a small fraction of the boundaries present in the data. Alternative available
data sets are limited by their restricted focus on motion boundaries at the expense of
more general spacetime structural boundaries [8]. The sequences presented here, con-
sisting of juxtaposed natural and man-made structures, were obtained from a variety
of sources: a Canon HF10 camcorder, the BBC documentary “Planet Earth” and the
“BBC Motion Gallery” online video repository. Each sequence spans 10 frames. For
each example, frame-by-frame hand-labeled ground truth was established. The identi-
fied boundaries in Fig. 4 provide compelling qualitative evidence that the proposed de-
tector performs well on image sequences containing a wide variety of spacetime struc-
tures. This data set is available at www.cse.yorku.ca/vision/research/
spacetime-grouping.

To quantify performance, results of the proposed detector are compared with the
hand-labeled ground truth as well as alternative approaches. In particular, mean preci-
sion/recall scores [25] were calculated across all image sequences shown in Fig. 4 and
are shown as tuning curves in Fig. 2 as detection parameters are varied. Here, over-
partitioning is characterized in the curves by high recall but low precision, and the
converse holds for under-partitioned image sequences.

The left panel of Fig. 2 shows several different curves for the proposed method,
with each curve corresponding to a different value of the smoothing parameter, hrange;
all curves are swept as the detection threshold varies from 0 − 1. Matching between
ground truth and identified boundary points was carried out using a distance threshold
of eight, which is reasonable given that the support of the various compared detectors
span approximately eight pixels. The consistently high recall indicates that ground truth
boundaries are accurately marked. At the same time, a relatively high precision is at-
tained, which indicates false boundaries are not prevalent. Further, the approach is seen
to be stable with respect to variation of the smoothing parameter.

The right panel of Fig. 2 compares the best curve of the proposed approach, hrange =
0.14, with two alternative methods: (1) edge detection on dense optical flow fields [1]
(implemented as a 3D Canny edge operator [24] applied to flow recovered using Lucas-
Kanade [26]) and (2) the rank-based method that analyzes the gradient structure tensor
over a neighbourhood [9]. These methods are selected for comparison as they are local
(like the proposed method) and edge-detection in flow fields is a long standing ap-
proach, while the rank-based analysis is a recent proposal that has shown strong results
for certain boundary types. Tuning curves were swept for the flow- and rank-based de-

www.cse.yorku.ca/vision/research/spacetime-grouping
www.cse.yorku.ca/vision/research/spacetime-grouping
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Fig. 2. Precision/recall curves. (left) Precision/recall of the proposed detector, each
curve corresponds to a different setting of the range bandwidth used for smoothing.
(right) Comparison of precision/recall with the proposed (optimal curve in (left)), flow-
and rank-based detectors.

tectors by varying their detection thresholds from 0− 10 and 0− 1, resp. Curves for all
three methods have the expected shape; however, flow- and rank-based are translated
along the precision axis, which indicates significant over-partitioning relative to the pro-
posed approach. Along these lines, rank-based outperforms flow, but is still noticeably
worse than the proposed method.

To scrutinize the results in Fig. 2 further, Fig. 3 shows a comparison of the various
boundary detectors on selected examples from Fig. 4 (c), (f) and (i). Also to compare
against global methods, results from a recent level-set-based approach are shown [15].
Note that the global method must be supplied with a priori knowledge of the number
of regions and hand initialization of its boundary3. For the motion parallax example, all
of the alternative methods yield reasonable results. This is to be expected, as they are
designed for motion boundaries. In the other two examples, the flow and rank methods
yield spurious boundaries in the transparency and scintillation regions. This shortcom-
ing arises from the inability of these methods to recover coherent measurements in
non-coherent motion regions, as the assumption that coherency is well characterized by
a single smoothly varying flow is violated. These spurious boundaries are the source
of the low precision yet high recall rates indicated for the flow- and rank-based detec-
tors in Fig. 2. For the transparency case using level-sets, the part of the initial contour
that is outside the moving target evolves correctly; however, the part that started inside
the moving region converges incorrectly, as the target interior does not conform to the
method’s assumption of a single smooth flow. In the scintillation case, the level-set col-
lapses to a single region. Here, the failure is due to the relative lack of spatial structure
in the ship interior, which allows the approach to fit a flow across the ship that is consis-
tent with whatever flow it (erroneously) recovers for the scintillating water. The relative
lack of structure in the ship interior also accounts for the apparent difference in per-
formance of the flow and rank methods in such regions: Flow recovers highly variable

3 Due to the dependence of the extracted boundaries on hand contour initialization, number of
regions and various scaling parameters in the level-set approach, it is not customary to sweep
precision/recall curves for level-sets; hence, only qualitative comparisons are provided here.
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Fig. 3. Comparison of results for flow, rank, level-set and proposed approaches to
boundary detection applied to Fig. 4 (c), (f) and (i). For level sets, red and black curves
show hand initialized and converged result, resp. For the scintillation example the level
set collapses to yield a single region.

vector fields that are interpreted as boundaries; whereas, unstructured regions are rank
consistent and thus do not yield spurious boundaries. In contrast to the alternatives, the
proposed detector naturally handles all three cases highlighted in Fig. 3.

4 Discussion and summary

Most previous methods for spatiotemporal boundary detection are concerned with bor-
ders between regions of contrasting optical flow. Others are focused on dynamic tex-
tures. Improvements to these various methods might be realized via introduction of
thresholds (e.g., confidence measures), multi-scale analyses (e.g., pyramid schemes for
accommodating rapid motion), contour completion (cf. [9]), a more sophisticated flow
estimator than considered here, etc. These approaches, however, fundamentally are lim-
ited by their underlying assumptions regarding the classes of visual phenomena that are
to be encountered, which in turn limit their applicability to detecting a very circum-
scribed class of boundaries (e.g., motion). In comparison, it has been demonstrated that
the proposed approach can naturally deal with the wide variety of real-world scenarios
presented.

In summary, this paper has presented a unified approach to representing and detect-
ing boundaries between a wide range of juxtaposed spacetime patterns (unstructured,
static, motion, flicker, (pseudo-)transparency, translucency, scintillation). The approach
is based on a distributed characterization of visual spacetime in terms of 3D, (x, y, t),
spatiotemporal orientation, followed by application of a spatiotemporal differential op-
erator (generalized gradient) to mark boundaries. Empirical evaluation on a wide va-
riety of imagery demonstrates the proposed detector’s ability to delineate boundaries
between coherently structured regions.
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Fig. 4. Boundary detection results on a diverse and challenging set of natural imagery.
In each example, the input sequence, a frame from the human-labeled ground truth and
the boundary detection result, resp. are given. (a) A panning sequence consisting of
a clear sky (i.e., unstructured) and a building (source: HF10). (b) Motion parallax se-
quence consisting of two mountain faces, where the foreground surface moves rapidly
revealing a slower moving surface (source: “Planet Earth”). (c) Tree in foreground be-
ing coarsely stabilized by moving camera operator with resulting background motion
(source: HF10). The background consisting of the ground plane is not fronto-parallel
with respect to the camera, as a result the motion varies across the surface. (d) A leop-
ard rapidly moving leftward behind a static tree (source: “Planet Earth”). (e) A flying
bird crudely tracked by the camera operator to yield a slow moving target and a rapidly
moving background (source: “Planet Earth”). (f) A ship moving over a scintillating
water surface (source: “BBC Motion Gallery”). (g) A painting hanging on an unstruc-
tured wall with a light flickering in an adjacent hallway (source: HF10). (h) A translu-
cency sequence realized by projecting (using an LCD projector) a walking person over
a static painting (source: HF10). (i) A pseudo-transparency sequence consisting of a
person walking behind a fence (source: HF10). (j) A juxtaposed motion and pseudo-
transparency sequence consisting of two people moving rightward, one moving in front
of a fence while the second is moving behind it (source: HF10). To view these videos,
see supplemental material.
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