
FEICHTENHOFER et al.: SPACETIME FORESTS WITH COMPLEMENTARY FEATURES 1

Spacetime Forests with Complementary
Features for Dynamic Scene Recognition

Christoph Feichtenhofer1

cfeichtenhofer@gmail.com

Axel Pinz1

axel.pinz@tugraz.at

Richard P. Wildes2

wildes@cse.yorku.ca

1 Institute of Electrical Measurement
and Measurement Signal Processing
Graz University of Technology, Austria

2 Department of Electrical Engineering
and Computer Science
York University
Toronto, Ontario, Canada

Abstract

This paper presents spacetime forests defined over complementary spatial and tem-
poral features for recognition of naturally occurring dynamic scenes. The approach
improves on the previous state-of-the-art in both classification and execution rates. A
particular improvement is with increased robustness to camera motion, where previous
approaches have experienced difficulty. There are three key novelties in the approach.
First, a novel spacetime descriptor is employed that exploits the complementary nature
of spatial and temporal information, as inspired by previous research on the role of ori-
entation features in scene classification. Second, a forest-based classifier is used to learn
a multi-class representation of the feature distributions. Third, the video is processed in
temporal slices with scale matched preferentially to scene dynamics over camera motion.
Slicing allows for temporal alignment to be handled as latent information in the classifier
and for efficient, incremental processing. The integrated approach is evaluated empiri-
cally on two publically available datasets to document its outstanding performance.

1 Introduction
Recognizing scene categories in unconstrained video is important for many practical vision
applications such as surveillance and safety systems, e.g. cameras monitoring spacetime
events such as forest fires or avalanches. Although this importance has triggered recent re-
search activity, state-of-the-art classification frameworks are still far from human recognition
performance. The amount of information and variability present in images of diverse natu-
ral scenes calls for an approach that is able to handle multiple classes, scales and temporal
variations, yet still be efficient in training and recognition.

While static scene recognition from single images has been researched extensively (e.g.
[11, 18, 20, 21, 24, 27, 30, 31, 33]), relatively little research has considered video-based
dynamic scene recognition [8, 22, 28], even though the availability of temporal information
should provide an additional means for classifing scenes visually. A useful feature type for
both static [18, 24, 30] and dynamic [8] scene classification is based on local measurements
of orientation. In using local orientation measurements that have been aggregated into texture
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patches, these approaches build on research in both static [3] and dynamic [7] texture analysis
that use similar primitives. Application of such measurements to dynamic image analysis
additionally has been shown useful in a variety of areas, perhaps most related to current
concerns are image motion estimation [1, 29] and human action characterization [9]. While
their application to dynamic scene recognition has led to state-of-the-art performance, it also
has shown notable limitations when confronted with significant camera motion [8].
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Figure 1: Overview of the proposed dynamic scene classification framework. (a) The input
sequence is divided into cuboids using a spatiotemporal pyramid representation. τ temporal
slices are created to process the frames in a sliding window approach. (b,c) The cuboids are
filtered by banks of multscale, σ , oriented filters along equally separated directions, θ , in
image spacetime (b) and space (c) to capture both dynamic and static appearance informa-
tion. (d) Filter responses cast weighted votes in spacetime orientation cells. (e) The class
of each temporal slice is determined via likelihood voting, using a multi-class random forest
classifier. Subsequently, all slice-based classifications are combined across the entire input.

In the light of previous research, the present work makes three main contributions. (i) A
novel descriptor is presented that integrates complementary information from separate spa-
tial and temporal orientation measurements for aggregation in spacetime pyramids. Distinct
from previous application of spatiotemporal orientation to dynamic scenes [8], separation of
spatial and temporal orientation allows those components to be differently weighted in clas-
sification. (ii) A random forest classifier is applied for the first time to dynamic scenes. This
spacetime forest allows for automatic determination of the most discriminative features to
separate the classes based on appearance and dynamics with computational efficiency. The
approach allows the classifier to learn different weights for different class discriminations;
e.g. a beach sequence may be better represented by its motion information, while a forest fire
sequence might be better distinguished by its spatial appearance. (iii) Video is processed in
incremental temporal slices with scale matched preferentially to scene dynamics (in compar-
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ison to camera motion). This strategy allows for temporal alignment to be treated as latent in
the classifier, efficient processing and robustness to large temporal variation across time (e.g.
from camera motion), even while capturing intrinsic scene characteristics. Previous dynamic
scene research has suffered in the presence of camera motion [8] and has provided little con-
sideration of on-line processing concerns. Further, the approach has been evaluated on two
publically available datasets [8, 28]; results show that it achieves a new state-of-the-art in
dynamic scene recognition. Figure 1 overviews the framework.

2 Technical approach

2.1 Complementary spacetime orientation descriptor

This section puts forth a novel descriptor for dynamic scene representation that is based
on the complementary combination of several different primitive measurements. Spatially
oriented measurements are used to capture static image appearance and are combined with
spatiotemporally oriented measurements to capture image dynamics. Filtering operates at
multiple scales to capture the multiscale characteristics of natural scenes. Furthermore,
colour channels are included to capture complementary chromatic information. Interest-
ingly, evidence from biological systems suggests that they exploit similar complementary
feature combination in their visual processing [10, 13, 15, 26, 34].

Spatial and temporal information. Spatial appearance and temporal dynamics informa-
tion are extracted via applications of multiscale filter banks that are further tuned for spatial
or spatiotemporal orientation. In the spatial domain, 2D Gaussian third derivative filters,
G(3)

2D(θi,σ j) with θi denoting orientation and σ j scale, are applied to yield a set of multiscale,
multiorientation measurements according to

ES(x;θi,σ j) = ∑
Ω

|G(3)
2D(θi,σ j)∗I(x)|2, (1)

where I is an image, x = (x,y)> spatial coordinates, ∗ convolution, Ω a local aggregation
region and subscript S appears on ES to denote spatial orientation.

Similarly, dynamic information is extracted via application of 3D Gaussian third deriva-
tive filters, G(3)

3D(θi,σ j) with θi and σ j now denoting the 3D filter orientations and scales
(resp.), applied to the spacetime volume, V , indexed by x = (x,y, t)>, as generated by stack-
ing all video frames of a sequence along the temporal axis, t, to yield

EST (x;θi,σ j) = ∑
Ω

|G(3)
3D(θi,σ j)∗V(x)|2, (2)

with subscript ST on EST to denote spatiotemporal orientation. Following previous work
in spacetime texture analysis [7], the spatiotemporal responses, (2), are further combined to
yield measures of dynamic information independent of spatial appearance, as follows. In the
frequency domain, motion occurs as a plane through the origin [35]. Therefore, to remove
spatial information from the initial spatiotemporal orientation measurements, (2), they can
be summed across all orientations consistent with a single frequency domain plane. Let the
plane be defined by its normal, n̂, then measurements of orientation consistent with this plane
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are given as

EMST (x; n̂,σ j) =
N

∑
i=0

EST (x,θi,σ j), (3)

with θi one of N +1 equally spaced orientations consistent with the frequency domain plane
and N = 3 is the order of the employed Gaussian derivative filters; for details see [7]. Here,
the subscript MST on EMST serves to denote that the spatiotemporal measurements have
been “marginalized” with respect to purely spatial orientation.

As noted in Sec. 1, previous spacetime filtering approaches to dynamic scene recogni-
tion tend to exhibit decreased performance when dealing with scenes captured with camera
motion, in comparison to scenes captured with stationary cameras. A likely explanation for
this result is that the approaches have difficulty in disentangling image dynamics that are
due to camera motion vs. those that are intrinsic to the scenes. Here, it is interesting to note
that camera motion often unfolds at coarser time scales (e.g., extended pans and zooms) in
comparison to intrinsic scene dynamics (e.g., spacetime textures of water, vegetation, etc.);
however, previous approaches have made their measurements using relatively coarse tempo-
ral scales and thereby failed to exploit this difference. In the present approach this difference
in time scale is captured by making use of only fine scales, σ , during spatiotemporal filtering,
(2), so that they are preferentially matched to scene, as opposed to camera, dynamics.

The orientation measurements, (1) and (3), can be taken as providing measures of the
signal energy along the specified directions, θi. This interpretation is justified by Parseval’s
theorem [25], which states that the sum of the squared values over the spacetime domain
is proportional to the sum of the squared magnitude of the Fourier components over the
frequency domain; in the present case, the squared values of the orientation selective filtering
operations are aggregated over the support regions, Ω.

Owing to the bandpass nature of the Gaussian derivative filters, the oriented energy fea-
tures are invariant to additive photometric variations (e.g., as might arise from overall image
brightness change in imaged scenes). To further provide for invariance to multiplicative pho-
tometric variations, each orientation selective measurement in (1) and (3) is normalized with
respect to the sum of all filter responses at that point according to

ÊS(x,θi,σ j) =
ES(x,θi,σ j)

∑
N
i ES(x,θi,σ j)+ ε

(4)

for the purely spatially oriented measurements, (1), and similarly for the dynamic measure-
ments, (3), to yield a correspondingly normalized set of measurements, ÊMST . Note that ε is
a small constant added to the sum of the energies over all orientations. This bias operates as
a noise floor and avoids numerical instabilities at low overall energies. Further, normalized
εs are added to the set of filtering results, calculated as ε̂S = ε/

(
∑

N
i ES(x,θi,σ j)+ ε

)
, to

capture lack of spatial orientation structure in a region and an analogously defined ε̂MST to
capture lack of spatiotemporal structure. For example, notice that for regions that are devoid
of oriented structure, the sum in the numerator will be dominated by ε so that the ratio will
tend to 1 and thereby be indicative of lack of (orientation) structure.

Chromatic information. Chromatic information can greatly influence (static) object and
scene recognition [32] and also has proven useful in previous work on dynamic scene recog-
nition [8, 28]. Correspondingly, chromatic information is incorporated in the present dy-
namic scene descriptor by adding three more measurements at each point in the image se-
quence taken as CIE-LUV colour space observations [37].
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Temporal slice-based aggregation. The complementary spacetime orientation measure-
ments presented so far are defined pointwise across a video sequence. For the purpose of
classification of the entire video into a scene class, the local descriptors are summed across
time, t, within τ discrete units of equal duration to yield a set of temporally aggregated im-
ages, which are referred to as temporal slices. Temporal slicing is motivated by the desire
for incremental processing that can allow for efficient, on-line operation. Use of short-term
parceling of the measurements also is well matched with the restriction to use of fine tem-
poral scales during spatiotemporal filtering to favour scene over camera dynamics. During
classification (Sec. 2.2) each temporal slice initially is classified individually, with the indi-
vidual classifications subsequently combined to yield overall classification for the video.

Having established temporal slices for an input video, the complementary measurements
are processed in successive temporal slices across the video. Each slice is hierarchically
aggregated into histograms to form a spatiotemporal pyramid, analogous to that used pre-
viously for static [18] and dynamic [8] scene analysis. At each level of the pyramid, each
temporal slice is broken into X×Y ×T 3D cuboids (see Fig. 1(a)), with filter measurements
collapsed into histograms within each cuboid, as illustrated in Fig. 1(d). The support of
the cuboid at any given level of the pyramid corresponds to its outer scale [17]; indeed, it
corresponds to the aggregation region Ω in the filtering equations, (1) and (2). Moreover,
the adjacency structure of the cuboids capture the overall scene layout. For each cuboid,
the histograms are L1-normalized, to represent a distribution of chromatic, multiscale ori-
ented spacetime energy and lack of oriented structure (via ε̂). Let Mθ ,Mn̂, Mσθ

and Mσn̂
be the number of spatial orientations, spatiotemporal orientations and their (inner) scales
considered in the multiscale oriented filtering operations, resp. Then, the dimension of each
histogram is the quantity (Mθ +1)×Mσθ

+(Mn̂ +1)×Mσn̂ +3, with 1 added to the number
of orientations due to ε̂ , and 3 the number of colour channels. The histograms for all cuboids
are concatenated into a final feature vector, v, that comprises the Complementary Spacetime
Orientation descriptor (CSO) to characterize a temporal slice of the video.

2.2 Spacetime Forests

Random Forests (RFs) are an ensemble of F decision trees {Tk}F
k=1 learned with random fea-

tures. Each decision tree is used independently to classify the input feature vector, v, based
on the leaf node at which the corresponding feature vector arrives. Hence, the leaf nodes of
all trees hold the posterior distribution P(c|v) over the classes c ∈ {1, · · · ,C}. Previously,
RF classifiers have been applied to a variety of vision tasks, e.g., [4, 19, 23, 36]. Detailed
descriptions of RFs are available elsewhere, e.g., [2, 5, 6].

In the present work, RFs are employed for their ability to combine several cues for multi-
class prediction, as well as their increased speed in the training and testing processes over
traditional classifiers. Here, the classes correspond to different dynamic scenes (e.g., beach
vs. city, etc.) and the feature vectors correspond to the CSO descriptors defined in the pre-
vious subsection. In this subsection, a particular instantiation of RFs, termed Space-Time
Random Forests (STRF) are defined.

Randomized Training. During training, the temporal alignment of the video slices is
treated as latent; correspondingly, each temporal slice of each training video generates its
own feature vector according to procedures of Sec. 2.1. This approach allows leveraging of
the high temporal diversity in the spatiotemporal patterns.
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Each tree is constructed by drawing a random bootstrap sample from the training set.
Bootstrapping in the training stage allows maximum training efficiency [6] and avoids over-
fitting [2] to generalize well in practice. Further randomness is introduced in the node op-
timization step by selecting a random subset m of the feature vector’s dimension to be con-
sidered in a random threshold test for determination of the best split for each node. Here,
the split is selected as that which maximizes the information I in the final class distribution,
after splitting into a left (L) and right (R) node:

I = H(Q)− ∑
i∈{L,R}

|Qi|
|Q|

H(Qi), (5)

where H(Q) =−∑c∈C p(c)log(p(c)) is the Shannon entropy, p(c) the proportion of classes
in Q belonging to class c and | · | denotes the size of the set at a given node. Tests are selected
for all nodes recursively until the growing process is stopped when no further information
gain is achieved. The final class distributions at the leaves are calculated as the ratio between
the number of feature vectors of each class and the total number of features which reach the
leaf after training.

As some classes may be better represented by specific feature types, the node optimiza-
tion process in each tree is restricted to a single feature type. To best separate the classes
with the CSO descriptor, the input for the RF is first structured into the three complementary
feature channels: spatial orientation, (marginalized) spatiotemporal orientation and colour.
Then, the channels are used to train F

3 trees each, to best distinguish the classes, based on a
particular channel only. Lastly, these complementary trees are merged, to obtain the space-
time forest {Tk}F

k=1.

Recognizing Dynamic Scenes. For classification, the feature vectors, vτ , of scenes to be
recognized are again decomposed into the three distinct channels and sent simultaneously
through the respective complementary trees until the corresponding leaves are reached. Here,
τ is the temporal slice of the input volume where the feature is extracted. Each tree gives a
classification by voting for the class labels according to the class distribution pk(c|vτ) of the
leaf which is reached by vτ in tree k.

Given the resulting set of tree predictions, they are combined in two stages to yield a
classification at each temporal instance. First, the prediction results of the forest for the
current temporal slice, τ , are calculated as a simple averaging of the leaf distributions pk in
the F trees in the forest

Pτ(c|vτ) =
1
F

F

∑
k=1

pk(c|vτ). (6)

Second, to yield a final classification across all temporal slices available up to a given time,
the class likelihoods for each slice are treated as temporal predictions and once again com-
bined via averaging

P(c|v) = 1
τ

τ

∑
l=1

Pl(c|vl). (7)

The current classification of the video is then given as

c = argmax
c

P(c|v). (8)
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2.3 Implementation Details

Video Descriptor. In the current implementation, Mθ = 4 for spatial (1) and 10 for spa-
tiotemporal (2) oriented filtering operations, as those numbers span orientation space for
the order and dimensionality of filters employed [12]. Here, it is of note that orientation
selective filters other than Gaussian derivatives might have been used (e.g., oriented Gabor
filters[16]); however, the chosen filters enjoy the advantage of particularly efficient imple-
mentation owing to separability and steerability [12]. In any case, the results of the spa-
tiotemporal filtering, (2), are further combined to capture frequency domain planes, (3), pa-
rameterized by n̂ corresponding to motion along the leftward, rightward, upward and down-
ward directions as well as static (zero velocity) and flicker (infinite velocity); i.e. Mn̂ = 6.
For each orientation, spatial filtering is performed at Mσθ

= 4 different scales, starting at
σ = 2, varying coarser by octave; spatiotemporal filtering is performed at Mσn̂ = 1 rela-
tively fine scale (σ = 2) in preference for capturing short term temporal variations. Dur-
ing normalization, (4), ε = 500, which is quite small relative to image energies encoun-
tered in practice. The spacetime pyramid is constructed at 4 levels with number of cuboids
(X ×Y ×T ) ∈ {(8×8×1),(4×4×1),(2×2×1),(1×1×1)}. Pyramids are constructed
for each temporal slice of an input video, with the length of temporal slices set to 16 frames.
To represent the colour distribution in each cuboid, a 3 bin histogram of the CIE-LUV colour
channels is employed. Other colour spaces also were considered (RGB, HSV, CIE-Lab [37]);
however, LUV led to slightly better results in preliminary investigation.

Classifier. Even if the training data exhibits the same number of videos for each class, they
may have different durations. Therefore, the classifier would be severely biased towards the
classes containing long videos. To compensate for these differences, priors are used in the
training stage subsampling process. These are given by the inverse of the number of temporal
slices τ of all videos from a specific class c in the training set. For all experiments a multi-
class STRF with 500 trees for each of the three feature channels (i.e., spatial orientation,
(marginalized) spatiotemporal orientation and colour) of the video descriptor is trained. At
each split node, a random sample of m features is drawn for consideration in splitting [5].
In particular, m = blog2 Dc, where D is the feature vector dimensionality. The best split of
the random tests, determined by Eq. (5), is used to split the node. For training the node
splits, each tree uses a random bootstrap sample consisting of two thirds of the training data.
The error rate for observations left out of the training data is monitored as out-of-bag error
rate and may be used as an unbiased estimate of the classification performance of each tree
trained on a bootstrap sample [5].

3 Empirical evaluation
The proposed approach for dynamic scene recognition has been evaluated on the Maryland
“In-The-Wild” [28] and YUPENN Dynamic Scenes [8] datasets, consisting of 13 and 14
classes with 10 and 30 videos per class, respectively. The datasets contain videos showing
a wide range of natural dynamic scenes (avalanches, traffic, forest fires, waterfalls etc.); see
Table 1 where complete listings can be read off the left most columns of the tables. A notable
difference between the two datasets is that the Maryland dataset includes camera motion,
while the YUPENN dataset does not. To be consistent with previous evaluations ([8, 28]), the
same evaluation procedure was employed, i.e. a leave-one-video-out recognition experiment.
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To evaluate systematically the contributions of (i) the video descriptor (CSO), (ii) classifier
(STRF), and (iii) the use of temporal slicing and priors for classification, these components
are evaluated separately in the remainder of this section.

For the sake of comparison, several alternative video descriptors and classifiers are con-
sidered that have shown strong performance in previous evaluations [8, 28]. Descriptors con-
sidered are GIST [24] + HOF [22], GIST + chaotic dynamic features (Chaos) [28] and Spa-
tiotemporal Oriented Energies (SOE) [8]. All of these approaches include colour histograms
[14], as this addition generally increases classification performance [8, 28]. Classifiers con-
sidered are Nearest-Neighbor (NN), Support Vector Machine (SVM), Random Forest (RF)
and the proposed Spacetime Random Forest (STRF). NN and SVM are included, as they
have been employed in previous evaluations [8, 28]; RF is a random forest trained uniformly
across all components of the training vectors, which is included for the sake of comparison
to the proposed STRF, which trains separate trees for the spatial and temporal orientation as
well as colour components. The alternative approaches build their feature vectors by collaps-
ing across all temporal frames; for the sake of comparison, the proposed approach is shown
processing temporal information in several ways: Use a single temporal slice for classifica-
tion (RF and STRF, τ = 1); average the CSO feature vectors calculated for individual slices
across the entire video (RF, τ =all); combine individual slice classifications across the entire
video (STRF, τ = all) according to the proposed averaging (7), i.e. the complete proposed
approach. Results are shown in Table 1.

In comparison to the most closely related descriptor (SOE1) running under the same
classifier (RF), it is seen that the proposed CSO features improve overall performance in the
presence of camera motion (Maryland dataset) from 43% to 57% recognition accuracy using
only a single temporal slice (τ = 1), with an additional boost to 59% when feature vectors
are combined across all slices (τ =all). In contrast, when camera motion is not present
(YUPENN), the performance of the two feature sets under the same classifier is essentially
indistinguishable (81% vs. 82%). These results support the ability of the proposed approach
to capture intrinsic scene dynamics with robustness to camera motion. Further allowing the
classifier to consider the complementary feature components separately (STRF) shows even
better performance whether with τ = 1 slice or with combination across τ =all slices.

More generally, the proposed approach’s 68% accuracy on the Maryland dataset im-
proves on the previous best performer in the presence of camera motion (Chaos+GIST under
SVM) by 10%. Further, its accuracy of 86% on the YUPENN dataset sets a new state-of-
the-art for that case as well (even with SOE given the advantage of RF-based classification,
which it did not enjoy in its original application to dynamic scenes [8], but which is included
here for fair comparison). Indeed, while all other compared approaches show high variation
in performance between the two datasets, the proposed approach provides the best overall
performance in both cases. Moreover, best overall performance is attained even when only a
single temporal slice of 16 frames is processed (CSO, STRF, τ = 1).

The complementary nature of the CSO descriptor components is illustrated explicitly in
Fig. 2(a) and 2(b). The figure shows estimates of cross-validation performance as indicated
by the out-of-bag error rate [5] when training the random forest with spatial and temporal
orientation as well as colour information separately. It is seen that different classes are better
distinguished by different types of information; correspondingly, their combination provided
by the proposed approach (Table 1) yields improved classification performance.

1Recall that SOE derives from integrated spatiotemporal filtering, (2), without temporal slicing, and without the
proposed separation into complementary spatial, (1), and temporal, (3), components.
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Maryland “In-The-Wild”

Descriptor HOF+ Chaos+ SOE CSO
GIST GIST (proposed)

Classifier NN NN SVM NN RF RF RF STRF STRF
Temporal τ all all all all all 1 all 1 all
Avalanche 0.2 0.4 0.6 0.1 0.4 0.4 0.5 0.6 0.6
Bo. Water 0.5 0.4 0.6 0.5 0.5 0.8 0.8 0.8 0.8
Ch. Traffic 0.3 0.7 0.7 0.8 0.6 0.9 1.0 0.8 0.9
Forest Fire 0.5 0.4 0.6 0.4 0.1 0.3 0.5 0.8 0.8
Fountain 0.2 0.7 0.6 0.1 0.5 0.4 0.5 0.9 0.8

Iceberg Co. 0.2 0.5 0.5 0.1 0.4 0.5 0.4 0.6 0.6
Landslide 0.2 0.5 0.3 0.5 0.2 0.2 0.4 0.2 0.3

Sm. Traffic 0.3 0.5 0.5 0.7 0.3 0.6 0.5 0.6 0.5
Tornado 0.4 0.9 0.8 0.6 0.7 0.8 0.6 0.9 0.8

Volcanic Er. 0.2 0.5 0.7 0.3 0.1 0.5 0.8 0.5 0.7
Waterfall 0.2 0.1 0.4 0.2 0.6 0.5 0.5 0.5 0.5

Waves 0.8 0.9 0.8 0.8 0.5 0.7 0.7 0.6 0.8
Whirlpool 0.3 0.4 0.5 0.4 0.7 0.8 0.5 0.8 0.7
Avg. Perf. 0.33 0.52 0.58 0.42 0.43 0.57 0.59 0.66 0.68

YUPENN Dynamic Scenes data set

Descriptor HOF+ Chaos+ SOE CSO
GIST GIST (proposed)

Classifier NN NN NN RF RF RF STRF STRF
Temporal τ all all all all 1 all 1 all

Beach 0.87 0.30 0.90 0.93 0.97 1.00 1.00 1.00
Elevator 0.87 0.47 0.90 1.00 0.97 0.97 0.97 1.00

Forest Fire 0.63 0.17 0.87 0.67 0.80 0.83 0.76 0.83
Fountain 0.43 0.03 0.50 0.43 0.47 0.53 0.40 0.47
Highway 0.47 0.23 0.73 0.70 0.67 0.70 0.67 0.73

Lightning S. 0.63 0.37 0.90 0.77 0.90 0.90 0.93 0.93
Ocean 0.97 0.43 0.97 1.00 0.90 0.90 0.90 0.90

Railway 0.83 0.07 0.90 0.80 0.87 0.90 0.90 0.93
Rushing R. 0.77 0.10 0.90 0.93 0.93 0.93 0.97 0.97
Sky-Clouds 0.87 0.47 0.93 0.83 0.87 0.90 1.00 1.00

Snowing 0.47 0.10 0.50 0.87 0.47 0.43 0.57 0.57
Street 0.77 0.17 0.87 0.90 0.93 0.90 0.97 0.97

Waterfall 0.47 0.10 0.47 0.63 0.67 0.70 0.80 0.76
Windmill F. 0.53 0.17 0.73 0.83 0.93 0.87 0.93 0.93
Avg. Perf. 0.68 0.23 0.79 0.81 0.81 0.82 0.84 0.86

Table 1: Average classification rates for different video descriptor and classifier combina-
tions. The combination of diverse, informative feature channels (CSO) with a suitable clas-
sifier (STRF) gives overall best results. See text for details.
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(a) Maryland “In-The-Wild”
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(b) YUPENN Dynamic Scenes data set

Figure 2: Classification performance measured by the out-of-bag error rate when training
the random forest separately with spatial and spatiotemporal orientation as well as colour
components of the CSO descriptor. A single temporal slice of each clip is used for training.

Finally, in terms of execution speed, the current unoptimized Matlab implementation of
the full proposed approach computes a feature vector for a 16 frame slice in 4 seconds (due to
separable and steerable filtering) and takes an additional 5 milliseconds on average to report
a class label. This allows state-of-the-art scene classification, being within 2% accuracy of
the best performance across both datasets (also attained by the proposed approach, but using
a complete set of slices), in nearly real time. Moreover, filtering and random forests are
readily parallelizable for GPU implementations.

4 Conclusions
This paper has presented a novel approach to dynamic scene recognition based on three key
ideas. First, different scenes are best characterized in terms of different combinations of spa-
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tial, temporal and chromatic information. Correspondingly, the CSO descriptor has been in-
troduced that affords complementary consideration of spatial and spatiotemporal orientation
as well as colour information. Second, a particular instantiation of random forests, STRF,
has been introduced that allows the complementary components of the CSO descriptor to
be exploited during classification. Third, temporal slicing with scale matched to intrinsic
scene dynamics has been employed. Matching the scale of spatiotemporal filtering to scene
dynamics allows for recognition that is robust to camera motion. Slicing allows for effi-
cient, incremental processing of video as well as treatment of temporal alignment as latent
during classification. In empirical evaluation relative to a variety of previous algorithms for
dynamic scene recognition, the proposed approach has yielded a new state-of-the-art in dy-
namic scene recognition accuracy both with and without camera motion. Combined with the
inherent computational efficiency of the proposed approach, these recognition results sug-
gest relevance to real-world application scenarios, including video indexing and browsing as
well as surveillance and monitoring. Integration with such applications would serve as an
interesting direction for future research.
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