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Abstract—This paper provides a unified framework for the interrelated topics of action spotting, the spatiotemporal detection and
localization of human actions in video, and action recognition, the classification of a given video into one of several predefined
categories. A novel compact local descriptor of video dynamics in the context of action spotting and recognition is introduced based on
visual spacetime oriented energy measurements. This descriptor is efficiently computed directly from raw image intensity data and
thereby forgoes the problems typically associated with flow-based features. Importantly, the descriptor allows for the comparison of the
underlying dynamics of two spacetime video segments irrespective of spatial appearance, such as differences induced by clothing, and
with robustness to clutter. An associated similarity measure is introduced that admits efficient exhaustive search for an action template,
derived from a single exemplar video, across candidate video sequences. The general approach presented for action spotting and
recognition is amenable to efficient implementation, which is deemed critical for many important applications. For action spotting,
details of a real-time GPU-based instantiation of the proposed approach are provided. Empirical evaluation of both action spotting and
action recognition on challenging datasets suggests the efficacy of the proposed approach, with state-of-the-art performance

documented on standard datasets.

Index Terms—Action spotting, action recognition, action representation, human motion, visual spacetime, spatiotemporal orientation,

template matching, real-time implementations

1 INTRODUCTION
1.1 Motivation

THIS paper addresses the interrelated topics of detecting
and localizing spacetime patterns in a video and
recognizing spacetime patterns. Specifically, patterns of
current concern are those induced by human actions. Here,
“action” refers to a simple dynamic pattern executed by an
actor over a short duration of time (e.g., walking and hand
waving). In contrast, activities can be considered as
compositions of actions, sequentially, in parallel, or both.
Potential applications of the presented research include
video indexing and browsing, surveillance, visually guided
interfaces, and tracking initialization.

Joint detection and localization of actions is herein referred
to as “action spotting” (cf. word spotting in speech recogni-
tion). Action spotting seeks to detect and spatiotemporally
localize an action, represented by a small video clip (i.e., the
query), within a larger video that may contain a large corpus
of unknown actions. In the present work, action spotting is
achieved by a single query video that defines the action
template, rather than a training set of (positive and negative)
exemplars. In contrast, action recognition assigns a video
segment to an action category taken from a set of predefined
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actions. For example, evaluation of recognition performance
on the publicly available KTH [1], UCF Sports [2], and
Hollywood? [3] action benchmarks assigns a query video to
one of 6, 10, and 12 categories, respectively. Typically, action
spotting and recognition have been considered in a disjoint
manner, whereas the presented approach handles action
spotting and recognition in a common framework.

A key challenge in both action spotting and recognition
arises from the fact that the same action-related pattern
dynamics can yield very different image intensities due to
spatial appearance differences, as with changes in clothing.
Another challenge arises in natural imaging conditions
where scene clutter requires the ability to distinguish
relevant pattern information from distractions. Clutter can
be of two types: 1) Background clutter arises when actions
are depicted in front of complicated, possibly dynamic,
backdrops and 2) foreground clutter arises when actions
are depicted with distractions superimposed, as with
dynamic lighting, pseudotransparency (e.g., walking be-
hind a chain-link fence), temporal aliasing, and weather
effects (e.g., rain and snow). It is proposed that the choice
of representation is key to meeting these challenges: A
representation that is invariant to purely spatial pattern
allows actions to be recognized independent of actor
appearance; a representation that supports fine delineations
of spacetime structure makes it possible to tease action
information from clutter. Also, for real-world applications
such as video retrieval from the web, computational
efficiency is a further requirement.

For the present purposes, local spatiotemporal orienta-
tion is of fundamental descriptive power as it captures the
first-order correlation structure of the data irrespective of
its origin (i.e., irrespective of the underlying visual
phenomena), even while distinguishing a wide range of
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Fig. 1. Overview of approach to action spotting. (a) A template (query)
containing the isolated action of interest and search (database) video
serve as input; the template and search videos in the figure depict a
boxing action taken from the KTH [1] and MSR [10] action datasets,
respectively. (b) Application of spacetime oriented energy filters
decomposes the input videos into a distributed representation according
to 3D, (z,y,t), spatiotemporal orientation. (c) In a sliding window
manner, the distribution of oriented energies of the template is
compared to the search distribution at corresponding positions to yield
the similarity volume given in (d). Finally, significant local maxima in the

image dynamics (e.g., single motion, multiple super-
imposed motions [4], and temporal flicker). Correspond-
ingly, visual spacetime will be represented according to its
local 3D, (z,y,t), orientation structure: Each point of
spacetime will be associated with a distribution of
measurements indicating the relative presence of a
particular set of spatiotemporal orientations. Comparisons
in searching are made between these distributions.

Fig. 1 provides an overview of the proposed action
spotting approach. For action recognition, an uncropped
video constitutes the query video and a set of labeled video
snippets containing spatiotemporally localized actions form
the database. The query video is compared to each action in
the database and the label of the action with the global
maximum similarity value is returned as the category (cf.,
[5], [6], [7], [8]). In addition, the proposed approach
provides spatiotemporal localization information; note that
the issue of localization has generally been ignored in action
recognition related work. A preliminary description of this
work has appeared previously [9].

1.2 Related Work

A wealth of work has considered the analysis of human
actions from visual data, e.g., [11], [12]. One manner of
organizing this literature is in terms of the underlying
representation of actions. A brief corresponding survey of
representative approaches follows.

Tracking-based methods begin by tracking body parts,
joints, or both and classify actions based on features
extracted from the motion trajectories, e.g., [13], [14], [15],
[16]. General impediments to fully automated operation

include tracker initialization and robustness. Consequently,
much of this work has been realized with some degree of
human intervention.

Other methods have classified actions based on features
extracted from 3D spacetime body shapes as represented by
contours or silhouettes, with the motivation that such
representations are robust to spatial appearance details [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27]. This class
of approach relies on figure-ground segmentation across
spacetime, with the drawback that robust segmentation
remains elusive in uncontrolled settings. Further, silhou-
ettes do not provide information on the human body limbs
when they are in front of the body (i.e., inside the silhouette)
and thus yield ambiguous information.

Recently, spacetime interest points [28], [29], [30], [31],
[32], [33] have emerged as a popular means for action
recognition [1], [34], [35], [36], [37], [38], [39], [10]. Interest
points typically are taken as spacetime loci that exhibit
variation along all spatiotemporal dimensions and provide
locations for extracting descriptors capturing dynamics and
spatial appearance. Commonly, these descriptors have been
combined to define a global video descriptor (e.g., bag of
visual words). Sparsity is appealing as it yields significant
reduction in computational effort; however, interest point
detectors often fire erratically on shadows and highlights
[40], [41], as well as along object occluding boundaries, and
may be overwhelmed by the background-related interest
points in highly dynamic situations, which casts doubt on
their applicability to cluttered natural imagery. Addition-
ally, for actions substantially comprised of smooth motion,
important information is ignored in favor of a small number
of possibly nondiscriminative interest points. To ameliorate
some of these issues, various recent works have relied on
interest point schemes that recover a denser set of points
across the video (e.g., [42]) or forgo the use of interest points
all together and instead compute the descriptor at each
image point [43], [44], [45], [46].

Most closely related to the approach proposed in the
present paper are others that have considered dense
templates of image-based measurements to represent
actions (e.g., intensity image, optical flow, spatiotemporal
gradients, and other filter responses selective to both spatial
and temporal orientation). Typically, these measurements
are matched to a video of interest in a sliding window
formulation. The chief advantages of this framework
include avoiding problematic preprocessing of the input
video such as localization, tracking, and segmentation;
however, such approaches can be computationally inten-
sive. Further limitations are tied to the particulars of the
image measurement used to define the template.

Approaches have avoided preprocessing the raw input
imagery and used it directly as the initial representation,
e.g., [47]. This tack places the burden on the learning
process to abstract the action-related features. Alternatively,
more abstracted features (e.g., optical flow, gradients, etc.)
can serve as the basis for matching. In general, optical flow-
based methods, e.g., [48], [40], [49], [2], [50], [26], [51], suffer
as dense flow estimates are unreliable where their local
single flow assumption does not hold (e.g., along occluding
boundaries and in the presence of foreground clutter).
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Work using spatiotemporal gradients has encapsulated the
measurements in the gradient structure tensor [20], [52],
[53], [8]. This tack yields a compact way to characterize
visual spacetime locally, with template video matches
computed via dimensionality comparisons. However, the
compactness also limits its descriptive power: Areas
containing two or more orientations in a region are not
readily discriminated, as their dimensionality will be the
same; further, the presence of foreground clutter in a video
of interest will contaminate dimensionality measurements
to yield match failures. Finally, methods based on filter
responses selective for both spatial and temporal orienta-
tion, e.g., [54], [55], [56], [7], suffer from their inability to
generalize across differences in spatial appearance of the
same action, such as differences in clothing.

Many of the extant approaches have focused on high
detection accuracy while giving little attention to computa-
tional efficiency issues. As in the current paper, several
recent works have specifically addressed the computational
efficiency aspects of action recognition [53], [37], [23], [25],
[26], [43], [42], [10].

Also similar to the current work, several methods have
focused on recognizing actions based on a single query,
where a query video is encapsulated in a sliding-window
and compared against an annotated database of videos [20],
[52], [47], [7], [8]. These data-driven methods may prove
particularly useful for video retrieval tasks. For example, in
situations where a user provides a single video snippet of
an action, an applicable automated approach must be able
to return the most similar instances in a video database
without the luxury of additional positive or negative
examples (cf. Google’s “Search by Image” service [57]).

The features used in the present work derive from
spatiotemporal oriented filtering that captures dynamic
aspects of visual spacetime with robustness to purely
spatial appearance. Previous work in optical flow estima-
tion has made use of spatiotemporal filtering that discounts
spatial appearance in a different fashion than employed in
the current paper, as it appealed to a nonlinear optimization
procedure [58]. More closely related is previous work that
used the same filtering techniques employed in the present
paper, with two significant differences. First, these efforts
applied the filtering to very different research domains of
video segmentation [59] and dynamic texture recognition
[60]. Second, the previous work aggregated the filter
responses over relatively large regions of support to yield
a single distribution of measurements to represent a region
of interest, whereas in the present work each point in a
dense action template is associated with its own distribu-
tion to maintain the spatiotemporal organization of the
action. Significantly, it appears that the present contribution
is the first to apply and demonstrate the usefulness of the
proposed spatiotemporal filtering approach to action
analysis in any fashion.

1.3 Contributions

In the light of previous work, the major contributions of the
present paper are as follows:

1. A novel compact local oriented energy feature set is
developed for action spotting and recognition. This

representation supports fine delineations of visual
spacetime structure to capture the rich underlying
dynamics of an action.

2. An associated computationally efficient similarity
measure and search method are proposed that
leverage the structure of the representation. The
approach does not require preprocessing in the form
of actor localization, tracking, motion estimation, or
figure-ground segmentation.

3. The approach can accommodate variable appearance
of the same action, rapid dynamics, multiple actions
in the field-of-view, cluttered backgrounds and is
resilient to the addition of distracting foreground
clutter. While others have dealt with background
clutter, it appears that the present work is the first to
address directly the foreground clutter challenge.

4. A real-time implementation of the action spotting
approach is documented.

5. The proposed approaches to action spotting and
recognition are evaluated on a wide variety of
challenging videos, with state-of-the-art perfor-
mance documented on standard datasets.

2 TECHNICAL APPROACH

In visual spacetime, the local 3D, (z,y,t), orientation
structure of a pattern captures significant, meaningful
aspects of its dynamics. For action spotting and recognition,
single motion at a point, e.g., motion of an isolated body part,
is captured as orientation along a particular spacetime
direction. Significantly, more complicated scenarios still give
rise to well-defined spacetime orientation distributions:
Occlusions and multiple motions (e.g., as limbs cross or
foreground clutter intrudes) correspond to multiple orienta-
tions; high velocity and temporal flicker (e.g., as encountered
during rapid action executions) correspond to orientations
that become orthogonal to the temporal axis. Further,
appropriate definition of local spatiotemporal oriented
energy measurements can yield invariance to purely spatial
pattern characteristics and support action analysis as an actor
changes spatial appearance. Based on these observations, the
action spotting and recognition approaches developed make
use of spatiotemporal orientation measurements as local
features that are combined into spacetime templates that
maintain their relative spacetime positions.

In this work, it is assumed that the camera is stationary
in order for the proposed spacetime measurements to
capture the dynamics of the action rather than the camera
movement. Empirically, the proposed features have been
found to be robust to small amounts of camera movement,
such as camera jitter from a handheld video camcorder;
however, they are not invariant to large camera movements.
To accommodate large camera movements, a camera
stabilization procedure may be introduced as a preproces-
sing step, e.g., [37].

2.1 Features: Spatiotemporal Orientation

The desired spatiotemporal orientation decomposition is
realized using broadly tuned 3D Gaussian third derivative
filters, Gj3,(x), with the unit vector f capturing the 3D
direction of the filter symmetry axis and x = (z,y,t) the



spacetime position. The responses of the image data to
these filters are pointwise rectified (squared) and inte-
grated (summed) over a spacetime neighborhood, 2, to
yield the following locally aggregated pointwise energy
measurements:

By(x) =Y (Gs, * )%, (1)
x€€)

where I = I(x) denotes the input imagery and * convolu-
tion. Notice that while the employed Gaussian derivative
filters are phase-sensitive, summation over the support
region ameliorates this sensitivity to yield a measurement of
signal energy at orientation §. More specifically, this follows
from Rayleigh’s-Parseval’s theorem [61] that specifies the
phase-independent signal energy in the frequency pass-
band of the Gaussian derivative:

Ej(x) oc Y |F{Gsy * Dhws,wy, )l (2)

W Wy Wi

where (w,,w,) denote the spatial frequency, w; the temporal
frequency, and F the Fourier transform.

Each oriented energy measurement, (1), is confounded
with spatial orientation. Consequently, in cases where the
spatial structure varies widely about an otherwise coherent
dynamic region (e.g., single motion of a surface with varying
spatial texture), the responses of the ensemble of oriented
energies will reflect this behavior and thereby are spatial
appearance dependent, whereas a description of pure
pattern dynamics is sought. Note that while in tracking
applications it is vital to preserve both the spatial appearance
and dynamic properties of a region of interest, in action
spotting and recognition it is desirable to be invariant to
appearance while being sensitive to dynamic properties.
This quality is necessary so as to detect different people
wearing a variety of clothing as they perform the same
action. To remove this difficulty, the spatial orientation
component is discounted by “marginalization” as follows.

In general, a pattern exhibiting a single spatiotemporal
orientation (e.g., image velocity) manifests itself as a plane
through the origin in the frequency domain [62], [63].
Correspondingly, summation across a set of z-y-t-oriented
energy measurements consistent with a single plane through
the origin in the frequency domain is indicative of energy
along the associated spatiotemporal orientation, indepen-
dent of purely spatial orientation. Since Gaussian derivative
filters of order NV = 3 are used in the oriented filtering, (1), it
is appropriate to consider N + 1 = 4 equally spaced direc-
tions along each frequency domain plane of interest, as N + 1
directions are needed to span orientation in a plane with
Gaussian derivative filters of order NV [64]. Let each plane be
parameterized by its unit normal, fi; a set of equally spaced
N + 1 directions within the plane is given as

A il P . il
6; = cos <N—+1> 6, (1) + sin <N 1

1. Strictly, Rayleigh’s theorem is stated with infinite frequency domain
support on summation.

)ébm), (3)
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with §,(d) = i x &, /| x &, 63(d) = h x 0,(h), &, the unit
vector along the wy-axis,? and 0 <i < N.

Now, energy along a frequency domain plane with
normal fn and spatial orientation discounted through
marginalization is given by summing across the set of
measurements, E?),' as

N
Ea(x) =) _ B (%), (4)
=0
with 92- one of N + 1 = 4 specified directions, (3), and each
Ej calculated via the energy filtering, (1).

Finally, the marginalized energy measurements, (4), are
confounded by the local contrast of the signal and as a
result, increase monotonically with contrast. This sensitivity
makes it impossible to determine whether a high response
for a particular spatiotemporal orientation is indicative of
its presence or is indeed a low match that yields a high
response due to significant contrast in the signal. To arrive
at a purer measure of spatiotemporal orientation, the
energy measures are normalized by the sum of consort
planar energy responses at each point:

M
Eq (%) = By, (X)/ (Z Eq, (%) + 6), (5)
=1

where M denotes the number of spatiotemporal orientations
considered and e is a constant introduced as a noise floor and
to avoid instabilities at points where the overall energy is
small. As applied to the M oriented, appearance margin-
alized energy measurements, (4), (5) produces a correspond-
ing set of M normalized, marginalized oriented energy
measurements. To this set an additional measurement is
included that explicitly captures lack of structure (ie.,
untextured regions, such as a clear sky) via the normalized e:

A AI ~
E.(x) = e/ (Z B, (x) —l—e), (6)

to yield an M + 1 dimensional feature vector at each point
in the image data. Note for loci where oriented structure is
less apparent, the summation in (6) will tend to 0; hence, E,
approaches 1 and thereby indicates relative lack of
structure. The normalized energy measurements are taken
together as a distribution parameterized by spatiotemporal
orientation, fn. In practice, the set of measurements are
maintained as a (M + 1)-D histogram.

Conceptually, (1)-(6) can be thought of as taking an image
sequence and carving its (local) power spectrum into a set of
planes, with each plane corresponding to a particular
spatiotemporal orientation, to provide a relative indication
of the presence of structure along each plane or lack thereof in
the case of a uniform intensity region as captured by the
normalized ¢, (6). This orientation decomposition of input
imagery is defined pointwise in spacetime. For present
purposes, it is used to define spatiotemporally dense 3D,
(z,y,t), action templates from an example video (with each
pointin the template associated with a (A + 1)-D orientation

2. Depending on the spatiotemporal orientation sought, €, can be
replaced with another axis to avoid an undefined vector.
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input unstructured static rightward leftward flicker

Fig. 2. Input frames of a jumping jack sequence with select
corresponding energy channels from left-to-right, respectively; high
intensities in the energy channels denote high orientation response. The
energy channels are tuned to regions devoid of structure (unstructured),
no motion but textured (static), rightward and leftward motion with a
speed of approximately 1-pixel per frame, and regions that are flickering
or moving faster than the motion tuned channels.

feature vector) to be matched to correspondingly repre-
sented videos.

As an example, Fig. 2 illustrates the following five-way
spatiotemporal oriented energy decomposition of a jumping
jack action: unstructured (normalized ¢), static (stationary
texture), rightward and leftward motion (speed of 1 pixel/
frame), and flicker/infinite motion (orientation orthogonal
to the temporal axis); although, due to the relatively broad
tuning of the filters employed, responses arise to a range of
orientations about the peak tunings. In the initial frame, the
stationary person has a large response in the static-related
orientation channel and the background has a generally
large response in the normalized e channel due to its weak
texture structure. During the action, the leg regions exhibit
temporally asynchronous large responses in the orientation
channels tuned to leftward and rightward motion due to the
in and out movement of the legs. The arm regions exhibit a
large response in the flicker channel due to the rapid up and
down arm movements. Considered in unison, the spatio-
temporal organization of these distributed oriented energy
responses provide an action signature.

The constructed representation enjoys a number of
attributes that are worth emphasizing.

1. Owing to the bandpass nature of the Gaussian
derivative filters used in (1), the representation is
invariant to additive photometric bias in the input
signal. This follows from the fact that an additive
bias manifests as a DC response that the front-end
bandpass linear filters ignore.

2. Owing to the divisive normalization step, (5), the
representation is invariant to multiplicative photo-
metric bias. Specifically, the multiplicative bias
appears in each of the unnormalized energy terms
of the numerator and denominator of (5) and simply
cancel out through division.

3. Owing to the marginalization step, (4), the repre-
sentation is invariant to changes in appearance
manifest as spatial orientation variation.

Overall, these three properties result in a robust pattern
description that is invariant to changes unrelated to
dynamic variation (e.g., different clothing), even while
making explicit local orientation structure that arises with
temporal variation (single motion, multiple motion, tem-
poral flicker, etc.). In addition:

4.  Owing to the oriented energies being defined over a
spatiotemporal support region, (1), the representa-
tion can handle input data that are not exactly
spatiotemporally aligned. This point is illustrated in
Fig. 2, where it is seen that the energy responses are
spatially broad about their local maxima; corre-
spondingly, exact alignment between template and
search video is not critical in matching: Matches can
be driven by the broader responses, not just punctate
peaks in the filter outputs.

5. Owing to the distributed nature of the representa-
tion, foreground clutter can be accommodated: Both
the desirable action pattern structure and the
undesirable clutter structure can be captured jointly
so that the desirable components remain available
for matching even in the presence of clutter. The
approach’s resilience to foreground clutter is de-
monstrated empirically in Section 3.1 (Fig. 3)
through two examples, namely, dappled lighting
and a thin fragmented occluder (i.e., a fence)
superimposed over the actions.

6. The representation is efficiently realized via linear
(separable convolution, pointwise addition) and
pointwise nonlinear (squaring, division) operations
[64], [65]; Section 2.4 provides a description of a real-
time GPU implementation.

2.2 Spacetime Template Matching

To detect actions (as defined by a small template video) in a
larger search video, the search video is scanned over all
spacetime positions by sliding a 3D template over every
spacetime position. At each position, the similarity between
the oriented energy distributions (histograms) at the
corresponding positions of the template and search
volumes are computed.

To obtain a global match measure, I'(x), between the
template and search videos at each image position, x, of the
search volume, the individual histogram similarity mea-
surements are summed across the template

L(x) =Y ~[S(u), T(u—x)], (7)

where u = (u, v, w) ranges over the spacetime support of the
template volume and ~[S(u), T(u—x)] is the similarity
between local distributions of the template, T, and the
search, S, volumes. The peaks of the global similarity
measure across the search volume represent potential
match locations.

There are several histogram similarity measures that
could be used [66]. Here, the Bhattacharyya coefficient [67]
is used, as it takes into account the summed unity structure
of distributions (unlike L,-based match measures) and



yields an efficient implementation. The Bhattacharyya
coefficient for two histograms P and Q, each with B bins,
is defined as

B

1P, Q) =Y VPQ, (8)

b=1

with b the bin index. This measure is bounded below by
zero and above by one [68], with zero indicating a complete
mismatch, intermediate values indicating greater similarity,
and one complete agreement. Significantly, the bounded
nature of the Bhattacharyya coefficient makes it robust to
modest amounts of outliers (e.g., as might arise during
occlusion in the present application).

The final step consists of identifying peaks in the
similarity volume, I', where peaks correspond to volumetric
regions in the search volume that match closely with the
template dynamics. For action spotting, the local maxima
are identified in an iterative manner to avoid multiple
detections around peaks: In the spacetime volumetric
region about each peak the match score is suppressed (set
to zero); this nonmaxima suppression process repeats until
all remaining match scores are below a threshold, 7. In the
experiments, the volumetric region of the template centered
at the peak is used for suppression. For action recognition,
only the global maximum is recovered.

Depending on the task, it may be desirable to weight the
contribution of various regions in the template differently.
For example, one may want to emphasize certain spatial
regions and/or frames in the template. This can be
accommodated with the following modification to the
global match measure, (7):

P(x) =) w(u)y[S(u), T(u-x)], (9)

where w denotes the weighting function. In some applica-
tions, it may also be desired to emphasize the contribution
of certain dynamics in the template over others. For
example, one may want to emphasize the dynamic over
the unstructured and static information. This can be done
by setting the weight in the match measure, (9), to
w=1-— (EE + EASth), with the oriented energy measure
Estdtic, (5), corresponding to static structure, i.e., nonmov-
ing/zero-velocity, and E} capturing local lack of structure,
(6). An advantage of the developed representation is that it
makes these types of semantically meaningful dynamics
directly accessible.
For efficient search, one could resort to

1. spatiotemporal coarse-to-fine search [52], [7],
2. evaluation of the template on a coarser sampling of
positions in the search volume,
3. evaluation of a subset of distributions in the
template, and
4. early termination of match computation [69].
A drawback of these optimization strategies is that the
target may be missed entirely. In this section, it is shown
that exhaustive computation of the search measure, (7), can
be realized in a computationally efficient manner.
Inserting the Bhattacharyya coefficient, (8), into the
global match measure, (7), and reorganizing by swapping
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the spacetime and bin summation orders reveals that the
expression is equivalent to the sum of cross-correlations
between the individual bin volumes:

o) =33 VE VT —x) = 3 VS /T, (10)
b u b

with x denoting correlation, b indexing histogram bins, and
u = (u, v, w) ranging over template support.

Consequently, the correlation surface can be computed
efficiently in the frequency domain using the convolution
theorem of the Fourier transform [70], where the expensive
correlation operations in spacetime are exchanged for
relatively inexpensive pointwise multiplications in the
frequency domain:

I(x) :fl{;f{\/@}f{\/i;}},

with F{-} and F~'{-} denoting the Fourier transform and
its inverse, respectively, and 7] the reflected template. In
implementation, the Fourier transforms are realized effi-
ciently by the fast Fourier transform (FFT).

(11)

2.3 Computational Complexity Analysis

Let Wirsy, Hirsy, and Dipgy be the width, height, and
temporal duration, respectively, of the template, T, and
the search video, S, and B denote the number of spacetime
orientation histogram bins. The complexity of the correla-
tion-based scheme in the spacetime domain, (10), is
O(Blliegrsy WiH;D;). In the case of the frequency
domain-based correlation, (11), the 3D FFT can be realized
efficiently by a set of 1D FFTs due to the separability of the
kernel [61]. The computational complexity of the frequency
domain-based correlation is O[BWgHgDs(log, Ds +
log, Ws + log, Hs)].

In practice, on a standard CPU the overall runtime to
compute the entire similarity volume between a 50 x 25 x 20
template and a 144 x 180 x 200 search video with six space-
time orientations and ¢ is 20 seconds (i.e., 10 frames/second)
using the frequency-based scheme, (11), with the computa-
tion of the representation (Section 2.1) taking 16 seconds of the
total time. In contrast, search in the spacetime domain, (10),
takes 26 minutes. These timings are based on unoptimized
Matlab code executing on a 2.3 GHz processor. In compar-
ison, using the same sized input and a Pentium 3.0 GHz
processor, [52] reports that this approach takes 30 minutes for
exhaustive search.

Depending on the target application, additional savings
of the proposed approach can be achieved by precomputing
the search target representation offline. Also, since the
representation construction and matching are highly paral-
lelizable, real to near-real-time performance is possible
through the use of widely available hardware and instruc-
tion sets, e.g., multicore CPUs, GPUs, and SIMD instruction
sets. The following section describes a real-time GPU-based
implementation of the action spotting approach.

2.4 Real-Time Implementation

In addition to its low computational complexity, the
various processing stages of the proposed search approach
are amenable to parallelization. In this section, details of a
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TABLE 1
Running Times for the Three Major Parts
of the Proposed GPU Implementation

GPU Feature gﬁ:ﬁﬁl l:_:: Find
Model Extraction Y Peaks
Volume

GeForce 8400 GT {8} 60.3ms (32%) | 123.0ms (66%) | 3.1ms (2%)
Quadro FX 1800 {64} 13.7ms (35%) 24.1ms (62%) 1.0ms (3%)
GeForce 360M GTS {96} 7.6ms (19%) 30.3ms (77%) 1.6ms (4%)
GeForce 9800 GT {112} 9.5ms (33%) 18.1ms (64%) 0.8ms (3%)
GeForce 285 GTX {240} 3.7ms (25%) 10.6ms (71%) 0.6ms (4%)

Running times are given in milliseconds (ms) and the percentage of
overall execution given in parentheses. Numbers in braces indicate the
GPU cores available.

real-time GPU-based instantiation of the proposed action
spotting approach for live video processing are provided.
To realize the live action spotting approach, nVidia GPUs
and the CUDA programming model [71] were chosen due
to their relative maturity and ease of programming.

The efficient match algorithm described in Section 2.2 is
founded on the assumption that the entire search volume is
available. Consequently, this allows the computation of the
3D spacetime orientation features and the FFT-based
matching steps to be performed in a single pass over the
data. To accommodate causal processing for live videos,
incoming frames must be processed, while results from
previous frames are removed to avoid indefinite memory
growth. This requirement can be achieved by using a
“sliding temporal window,” realized as a circular array of
size T, where each incoming frame at time t replaces the
oldest encountered frame at ¢ — 7. While this temporal
windowing scheme precludes application of FFT-based
convolution along the temporal dimension, efficient frame-
wise computation can still be accomplished by realizing the
xy space convolution via pointwise multiplication in the
Fourier domain followed by pointwise addition along the
t-dimension (i.e., a standard convolution operation along
the temporal axis). The inverse FFT of the final result yields
the desired slice of the similarity volume. The forward and
inverse transforms are realized using CUDA’s CUFFT
library. The final peak finding step is highly parallelizable,
where it can be realized by a binary tree-like reduction
operation [72].

Table 1 gives the runtimes for each of the three major
components of the algorithm executed on a live search
video of size 320 x 184 and a template of size 64 x 43 x 30
using a 7D histogram (six orientations and ¢) for a number
of nVidia cards that primarily differ in the number of GPU
cores available. Indeed, oriented energies and similarity
scores can be computed very efficiently. Note the perfor-
mance of peak finding ultimately depends on the applica-
tion and its choice can also be dictated by the architecture.

3 EMPIRICAL EVALUATION

3.1 Action Spotting

The performance of the proposed action spotting algorithm
has been evaluated on an illustrative set of test sequences.
Matches are represented as a series of (spatial) bounding
boxes that spatiotemporally outline the detected action. To
realize the spatiotemporal orientation features for action

Fig. 3. Foreground clutter. Top three rows: Sample frames for walking
left, one- and two-handed wave query templates. Fourth row: Sample
walking left and one-handed wave detection results with foreground
clutter in the form of local lighting variation caused by overhead dappled
sunlight. Bottom row: Two-handed wave detections as action is
performed beside and behind a chain link fence. Foreground clutter
takes the form of superimposed static structure when the action is
performed behind the fence.

spotting, six different spacetime orientations are made
explicit, corresponding to static (no motion/orientation
orthogonal to the image plane), leftward, rightward, upward,
downward motion (1 pixel/frame movement), and flicker/
infinite motion (orientation orthogonal to the temporal axis).

3.1.1 Foreground Clutter
Fig. 3 shows results of the proposed approach on two
outdoor scenes containing distinct forms of foreground
clutter, which superimpose significant unmodeled pattern-
ing over the depicted actions and thereby test robustness to
irrelevant structure in matching. The first example contains
foreground clutter in the form of dappled sunlight with the
query actions of walking left and one-handed wave. The
second example contains foreground clutter in the form of
superimposed static structure (i.e., pseudotransparency)
caused by the chain-linked fence and the query action of
two-handed wave. The first and second examples contain
365 and 699 frames, respectively, with the same spatial
resolution of 321 x 185 pixels. All actions are spotted
correctly; there are no false positives.

To quantify action spotting performance based on a
single action exemplar, experiments were conducted on the
CMU [20] and MSR [10] action datasets.

3.1.2 CMU Evaluation

The CMU action dataset [20] is comprised of five action
categories, namely, pick-up, jumping jacks, push elevator
button, one-handed wave, and two-handed wave, where
each action is represented by a single training exemplar.
The CMU dataset was captured with a handheld video
camcorder in crowded environments with moving people
and cars in the background. Also, there are large variations
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Fig. 4. Precision-Recall curves for the CMU action dataset. Precision-Recall plots: Blue curves correspond to the proposed approach, and red and
green to baselines employing a single action exemplar, using shape plus flow with parts [20], or holistic flow [52], respectively (as reported in [20]),
and purple to a recent discriminative training-based approach (motion plus appearance) [24].

in the performance of the actions, including their distance
with respect to the camera.

Results are compared with ground truth labels included
with the CMU dataset. The labels define the spacetime
positions and extents of each action. For each action, a
Precision-Recall (P-R) curve is generated by varying the
similarity threshold from 0.6 to 0.97:

TP and Recall = E,

P ‘o _
recision 4TP T FP P

(12)
where TP is the number of true positives, F'P is the number
of false positives, and nP is the total number of positives in
the dataset. In evaluation, the same testing protocol as in [20]
is used. A detected action is considered a true positive if it
has a (spacetime) volumetric overlap greater than 50 percent
with a ground truth label. The same action templates from
[20] are used, including the provided spacetime binary
masks to emphasize the action over the background.

To gauge performance, the results of the proposed
approach were compared to three recent action spotting
approaches: 1) holistic flow [52], 2) parts-based shape plus
flow [20], and 3) motion plus spatial appearance [24].
Similar to the proposed approach, the holistic flow
approach only considers image dynamics, whereas the
parts-based shape plus flow approach combines the same
holistic flow approach in [52] with additional shape
information recovered from a spatiotemporal over-segmen-
tation procedure and embeds the matching process in a
parts-based framework [73] to improve generalization.
Furthermore, both approaches consider action spotting
from a single action exemplar, as is the focus in the current
approach. In contrast, the third approach [24] relies on a set
of positive and negative action exemplars to train a
discriminative classifier.

Fig. 4 shows P-R curves for each action. In comparison to
the holistic flow approach [52], the proposed approach
generally achieves superior spotting results, except in the
case of two-handed wave; nevertheless, the proposed
approach still outperforms holistic flow over most of the
P-R plot in this case. Furthermore, as discussed in Section 2.3,
the proposed approach is significantly superior from a
computational complexity perspective. In comparison to
the parts-based shape plus flow approach [20], the spotting
performance of the proposed approach once again is
generally superior, except in the case of two-handed wave.
In both cases, two-handed wave is primarily confused with
one-handed wave, resulting in a higher false positive rate and
thus lower precision. Such confusions are not unreasonable
given that the one-handed wave action is consistent with a

significant portion of a two-handed wave. In contrast, the
parts-based decomposition allows for greater flexibility in
distinguishing one-handed versus two-handed wave. It
should also be noted that the parts-based approach is
computationally more expensive than the proposed ap-
proach since it combines the computationally expensive flow
approach with a costly spacetime oversegmentation step.
Even without the consideration of shape cues and a
deformable model, the proposed approach generally outper-
forms [20], which demonstrates the discriminability of the
proposed feature set focused solely on image dynamics and
its robustness to a range of deformations.

In comparison to the discriminative learning motion plus
appearance approach [24], performance is very similar for
one-handed wave; for jumping jacks and two-handed wave,
performance again is rather similar with some trend for the
proposed approach to yield somewhat lower precision at
low recall, albeit higher precision at higher recall. For push
elevator button, performance is indistinguishable until the
highest recall rates, where [24] performs better. For pick-up,
the proposed approach performs significantly better across
the entire operational range considered. In its instantiation
of discriminative learning, the alternative approach makes
use of one positive exemplar and instances of the remaining
four actions as negative examples. In practice, reliance on
discriminative learning may limit applicability to video
browsing where a user might not provide negative or
positive examples beyond the instance of concern.

3.1.3 MSR Evaluation

The recent MSR action dataset [10] contains the following
three actions: boxing, hand clapping, and hand waving. The
testing sequences are captured with cluttered and dynamic
backgrounds, and the scale and performance of the actions
vary significantly across the subjects. The training actions
used with the MSR