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Spatiotemporal Stereo and Scene Flow via
Stequel Matching

Mikhail Sizintsev, Student Member, IEEE, and Richard P. Wildes, Member, IEEE,

Abstract—This paper is concerned with the recovery of temporally coherent estimates of 3D structure and motion of a dynamic
scene from a sequence of binocular stereo images. A novel approach is presented based on matching of spatiotemporal quadric
elements (stequels) between views, as this primitive encapsulates both spatial and temporal image structure for 3D estimation.
Match constraints are developed for bringing stequels into correspondence across binocular views. With correspondence
established, temporally coherent disparity estimates are obtained without explicit motion recovery. Further, the matched stequels
also will be shown to support direct recovery of scene flow estimates. Extensive algorithmic evaluation with ground truth data
incorporated in both local and global correspondence paradigms shows the considerable benefit of using stequels as a matching
primitive and its advantages in comparison to alternative methods of enforcing temporal coherence in disparity estimation.
Additional experiments document the usefulness of stequel matching for 3D scene flow estimation.

Index Terms—Stereo, motion, spacetime, spatiotemporal, scene flow, quadric element, stequel.

F

1 INTRODUCTION

1.1 Motivation

I N a 3D dynamic environment a visual system must
process image data that derives from both the temporal

and spatial scene dimensions. Correspondingly, stereo and
motion are two of the most widely researched areas in
computer vision. Within this body of research, integrated
investigation of stereo and motion has received consid-
erably less attention. Ultimately, recovery of 3D scene
structure must respect dynamic information to ensure that
estimates are temporally consistent. Similarly, 3D motion
estimates must be consistent with scene structure. More-
over, in situations where instantaneous binocular matching
is ambiguous (e.g., weakly textured surfaces or epipolar
aligned pattern structure), dynamic information has the
potential to resolve correspondence by further constraining
possible matches.

In response to the above observations, this paper de-
scribes a novel approach to recovering temporally coherent
disparity estimates as well as 3D scene flow estimates
from a sequence of binocular images. The key idea is
to base stereo correspondence on matching primitives that
inherently encompass both the spatial and temporal di-
mensions of image spacetime. In particular, each temporal
stream of imagery is locally represented in terms of its
orientation structure, as captured by the spatiotemporal
quadric (also variously referred to as the orientation tensor
and covariance matrix, see, e.g., [20], [3]). By representing
orientation structure uniformly across image space and
time, both instantaneously defined (e.g., spatial texture)
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and dynamically defined (e.g., motion) information can be
brought to bear on stereo correspondence in an integrated
fashion. It will be shown that by basing matching on this
representation, it is possible to recover temporally coherent
disparity estimates, without the need to make optical or
3D flow explicit. At the same time, 3D scene flow vectors
can be computed directly from the matched spatiotemporal
primitives. Further, this representation allows spatial and
temporal image structure to resolve otherwise ambiguous
matches in a fashion consistent with both sources of in-
formation. Significantly, applicability of this representation
to stereo correspondence is quite general and will be
demonstrated in both local and global matchers.

1.2 Previous work

Early work combining stereo and motion concentrated on
punctate features (e.g., edges, corners). One of the earliest
attempts made use of heuristics for assigning spatial and
temporal matches based on model-based reasoning [25].
A rather different early approach exploited constraints on
the temporal derivative of disparity [53], based on an
earlier psychophysically motivated analysis [39]. Other
work matched binocular features to recover 3D estimates
for temporal tracking [54], [59]. More recent research that
relies on loose coupling of stereo and motion has placed
greater emphasis on recovery of dense estimates. One
representative approach begins by recovery of binocular
matches, followed by joint recovery of consistent left and
right optical flows for final combination into 3D flow [58].
The general idea of combining disparity with left-right
consistent optical flows also has been extended to consider
space carving [30] coupled with simultaneous estimation
of optical flow from larger collections of cameras [17].
A rather different approach emphasized the recovery of
3D motion using optical flow in conjunction with multiple
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hypothesis binocular disparity maps [8]. The proposed
research differs from all such work in being focused on
a more integrated approach to spatiotemporal processing.

More recent stereo research has seen increased interest
in scene recovery from multi-camera (especially binocular)
video as constrained by 3D models. Some work has con-
centrated on the recovery of surface mesh models between
individual stereo pairs with tracking across time instances
serving to yield temporally consistent models [33]. Other
research considers multiple cameras, employs voxel carving
for initial estimation and uses intensity-based matching over
spatiotemporal volumes without consideration of image
motion differences between different views [36]. Still other
work casts stereo and motion estimation as a generic image
matching problem solved variationally after backprojecting
the input images onto a suitable surface [38]. Again, the
proposed approach differs from these lines of research in
its emphasis on a more integrated approach to stereo and
motion and in eschewing explicit surface models, which can
become problematic when dealing with multiple objects and
complex scenes.

Other lines of recent research have emphasized more
integrated approaches to stereo and motion processing.
Some of this work has concentrated on static scenes with
variable lighting [7]. Others have focused on defining
appropriate temporal integration windows, e.g., as part
of the correspondence process [57] or simply reinforce
disparity estimates from the previous frame using optical
flow [19]. Further, combined stereo and motion estimation
has been formulated in terms of both PDEs [50], [23] and
MRFs [51], [32], [55], [24], [31]. Still other work has
used direct methods for integrated recovery of structure
and egomotion [21], [48], [34]. Yet other approaches have
formulated matters as a 6D estimation problem (3D position
and 3D velocity associated with it) by fusing stereo and
optical flow recovery into a single estimation [17] as well
as through extension of space-carving to spacetime [52].
Finally, approaches have considered infinitesimal motion
and stereo disparity as encapsulated in a single brightness
constancy equation [40], [41]. The proposed research shares
with these efforts an emphasis on tight integration of
binocular imagery with time. It is novel in basing its
matching on the representation of image spacetime in terms
of local spatiotemporal orientation, which provides richer
image descriptions than employed in previous methods, as
they typically worked with raw image intensities.

A major tool that is employed in the proposed approach
is the representation of spacetime imagery in terms of
oriented spatiotemporal structure. Various research has doc-
umented enhancement [15], [20], optical flow recovery [1],
[22], tracking [5], grouping and segmentation [13], dynamic
texture analysis [10] and action recognition [6], [14], [27],
[9] on the basis of filters tuned for local spatiotemporal
orientation. More specifically, previous research has con-
sidered the use of the spatiotemporal quadric to capture
orientation in image spacetime, with application to motion
estimation, restoration, enhancement [20], [3] and flow
comparison [43]. However, it appears none has exploited

spatiotemporal orientation, in general, or the spatiotemporal
quadric, specifically, for stereo disparity estimation or for
scene flow estimation. Previous stereo work has defined
binocular correspondence based on a bank of spatial filters
[26]. The proposed approach also extracts its measures of
orientation via application of a filter bank; however, it is
significantly different in employing filters that span both
the spatial and temporal domains, thereby basing matching
on a fundamentally richer representation.

1.3 Contributions
In the light of previous research, the main contributions of
this work are as follows. (i) The spatiotemporal quadric is
proposed as a matching primitive for spacetime stereo. This
primitive captures both local spatial and temporal structure
and thereby enables matching to account for both sources
of data without need to estimate optical flow or 3D motion.
(ii) The geometric relationships between corresponding
spatiotemporal quadrics across binocular views are derived
and used to motivate a match cost. The spatiotemporal
match primitives and cost are incorporated in local and
global matchers. (iii) A method for recovery of 3D scene
flow is presented based on left-right spatiotemporal quadric
correspondences. (iv) Extensive empirical evaluation of
resulting disparity and scene flow estimation algorithms
is presented. Testing encompasses quantitative evaluation
on laboratory acquired binocular video with ground truth
and qualitative evaluation on more naturalistic imagery.
The laboratory imagery and associated ground truth are
available for download [44]. A preliminary version of this
research has appeared previously [46].

2 TECHNICAL APPROACH
2.1 Spatiotemporal matching primitive
In dealing with temporal sequences of binocular images,
it is possible to conceptualize of stereo correspondence in
terms of image spacetime, which naturally encompasses
both spatial and temporal characteristics of local pattern
structure, see Fig. 1a. While image spacetime can be
operated on directly, using pixel intensities, consideration of
local spatiotemporal orientation provides access to a richer
representation. Local orientation has visual significance as
orientations parallel to the image plane capture the spatial
pattern of observed surfaces (e.g., spatial texture); whereas,
orientations that extend into the temporal dimension capture
dynamic aspects (e.g., motion). By integrating the temporal
dimension into the primitive, subsequent matching will
be inherently constrained to observe temporal coherence.
Further, through combination of both temporal and spatial
structure in the descriptor, match ambiguities that might
exist through consideration of only one data source have
potential to be resolved.

2.1.1 3D steerable filters
To extract a representation of orientation from imagery,
one can filter the data with oriented filters. In the current
work, 3D Gaussian, second-derivative filters, G2, and their
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(a) (b) (c)

Fig. 1. Image Spacetime. (a) Spacetime can be conceptualized as a spatiotemporal volume xyt. An instan-
taneous motion trajectory, v (shown in red), traces an orientation in this volume. (b) An exemplar xt slice of
the spatiotemporal volume for the left view (c) The corresponding xt slice in the right view. ṽlxt and ṽrxt are the
projections of the vl and vr onto the xt slice; wl and wr are arbitrary vectors (shown in green) in correspondence
in xyt space and δr = w̃r − ṽr, δl = w̃l − ṽl (shown in blue); δr = Aδl as explained in text.

Fig. 2. Surfaces plots of 3D steerable filter pair G2 and
H2 oriented along the x-axis in the spacetime volume,
i.e. ŵ =

[
1 0 0

]>. Red and black colours repre-
sent positive and negative contributions, respectively.

Hilbert transforms, H2 [18], are applied to the data with
responses pointwise rectified (squared) and summed. Fil-
tering is executed across a set of 3D orientations given by
unit column vectors, ŵi. Hence a measure of local energy,
E, is computed according to

E(x; ŵi) = [G2(ŵi) ∗ I(x)]2 + [H2(ŵi) ∗ I(x)]2, (1)

where x = (x, y, t) are spatiotemporal image coordinates,
I is the image sequence and ∗ denotes convolution [18].

Figure 2 visualizes G2 along a particular direction and its
90◦-phase counterpart H2 filter. The composed response as
in (1) will be phase-invariant and specific to the chosen di-
rection. Furthermore, even very oblique orientations which
correspond to large motions can be sampled with G2-H2

pairs, and therefore exploited in binocular image matching.
Filtering is applied separately to the left and right im-

age sequences. Here, filters are oriented along normals
to icosahedron faces with antipodal directions identified
(10 directions in total), as this uniformly samples the
sphere and spans 3D orientation for the employed filters.
Mathematically, these directions are defined by vectors

[±1,±1,±1] ,
[
0,
±1
φ
,±φ

]
,

[±1
φ
,±φ, 0

]
,

[
±φ, 0, ±1

φ

]
,

where φ =
√

5+1
2 , subject to normalization of each vector to

unit length. After filtering, every point in spacetime has an
associated set of values that indicate how strongly oriented
the local structure is along each considered direction.

2.1.2 Constructing the match primitive
To proceed, the individual energy measures are recast in
terms of the spatiotemporal quadric. This particular repre-
sentation captures local orientation as well as the variance
of spacetime about that orientation. This construct captures
the local shape of spacetime (e.g., point- vs. line- vs. plane-
like) in addition to direction for a local descriptor that is
richer than if (dominant) orientation alone is considered
[20]. Furthermore, the quadric casts structure in terms of
spacetime coordinates, x = (x, y, t), where it is convenient
to formulate binocular match constraints. In the context of
binocular matching, this quadric will be referred to as the
stequel, spatio-temporal quadric element, Q. In particular,

Q =
∑

i

Êi

(
5
4
ŵiŵ>i −

1
4

I3

)
, (2)

where I3 is an identity matrix, the summation is across the
set of filter orientations, ŵi, and Êi is the corresponding
local energy response (1), but now normalized such that∑
i Êi(x) = 1 (see Sec. 2.2 for normalization rationale).

In constructing Q, the dyadic product, ŵiŵ>i , establishes
the local frame implied by orientation ŵi weighted by
its corresponding response, Êi. Subtraction of the identity
component is necessary to remove the bias that otherwise
contaminates the local estimate of the quadric [20].

For a binocular sequence, the stequel, Q, is computed
pointwise in spacetime and separately for the left and right
image sequences to provide matching primitives; thus, it is
parametrized as Ql(x) and Qr(x), in reference to the left
and right views, resp. Significantly, the implied calculations
are modest. The calculation of local energy is realized
through steerable filters requiring nothing more than 3D
separable convolution and pointwise nonlinearities and is
thereby amenable to compact, efficient implementation [12]
including real-time realizations on parallel hardware, e.g.,
GPUs [56]. Construction of Q from the filter responses re-
quires only matrix summation, as specified in (2). Neverthe-
less, depending on the observed efficacy of this particular
filtering approach, alternatives may also be considered: As
examples, Gabor and lognormal filters may be considered.

Finally, it is worth noting that the stequel, Q, can be con-
structed in an alternative fashion using first-order deriva-
tives, i.e., as instantiated via the Grammian,

∑∇I(∇I)>
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Fig. 3. Stereo Geometry. A reference Euclidean coor-
dinate system is centred at the midpoint of the stereo
baseline, O. Cameras are rectified with a half-baseline
vector B = [b, 0, 0]> and focal lengths f . Left and right
optical centres are at Ol = −B and Or = B, resp.
Point P undergoes an arbitrary displacement V from
instance 0 to 1.

with ∇I = (Ix, Iy, It)> the spatiotemporal gradient and
summation taken over local spatiotemporal regions, e.g., as
used in [43] in a different context. While this definition
entails lower-order derivatives than (2), preliminary experi-
ments indicated that it yields generally inferior quantitative
results in the present context and will not be considered fur-
ther in experiments (see [45] for details). The experimental
advantage of the stequel vs. Grammian can be explained as
follows. First, the stequel is constructed from G2 and H2
filter responses which are more finely tuned to orientation
that G1 used in Grammian construction. Second, stequels
constructed from quadrature pair G2 and H2 provide a
more localized measure of orientation structure as they are
pointwise phase invariant; whereas, construction via the
Grammian relies on neighborhood aggregation to annihilate
phase.

2.2 Spatiotemporal epipolar correspondence
constraint
In establishing correspondence between binocular se-
quences, it is incorrect simply to seek the most similar
stequels, as local spatiotemporal orientation is expected to
change between views due to the geometry of the situation.
In this section, constraint is derived between corresponding
stequels subject to rectified and otherwise calibrated binoc-
ular viewing. This constraint is derived in two steps. First,
the relationship between local spatiotemporal orientations
in left and right image spacetime is derived as a 3D scene
point P suffers an arbitrary (infinitesimal) 3D displacement,
V, relative to the imaging system. Here, displacement can
come about through movement of the point, the imaging
system or a combination thereof. Further, since the analysis
is point-based, no scene rigidity is assumed.

While the relationship between left- and right-based flow
has been investigated previously (e.g., [53]), the present
derivation sets it in the light of left/right spatiotemporal
orientation differences with application to disparity estima-
tion; whereas, previous work assumed disparity estimation
and was focused on subsequent 3D inferences. Further,
the left/right flow relationships are generalized to capture
the relationship between arbitrary orientations in left and
right spacetimes. These results lead directly to the desired

relationship between binocular stequels in correspondence.
In the following, bold and regular fonts denote vectors

and scalars (resp.), uppercase denotes points relative to
the world, lowercase denotes points relative to an image,
superscripts l and r denote left and right cameras (resp.),
subscripts x, y, z, t specify coordinate components, and
vectors in image spacetime taken from time t = 0 to
t = 1 will be distinguished further with tilde. As examples:
Pl
t =

[
P lx P ly P lz

]>
is the left camera representation

of P at time t; plt =
[
plx ply

]>
is the left image

coordinate of Pl
t; w̃ =

[
wx wy 1

]>
is a vector in

image spacetime xyt from t = 0 to t = 1.

2.2.1 Left-Right Flow Relationship
Consider how a 3D point, P, is observed by the cameras
as a function of time, t, while it is displaced along 3D
direction, V. The geometry of the situation is shown in
Fig. 3. Cameras share a common intrinsic matrix

K =
[
f 0 0
0 f 0
0 0 1

]
,

where other components of the matrix are accounted for by
calibration and neglected. At time t, the projections of P
to the left and right views are given by

Pl
t = K ((Pt=0 −B) + tV) = Pl

t=0 + tKV (3)
Pr
t = K ((Pt=0 + B) + tV) = Pr

t=0 + tKV.

Note that both moving and stationary points are encom-
passed in this formulation, as V is arbitrary. The corre-
sponding image coordinates are found in the usual way,
e.g., for the left view

pl =
[
plx
ply

]
=
[
P lx/P

l
z

P ly/P
l
z

]
=

1
P lz

[
P lx
P ly

]
= Z−1Pl

2×1, (4)

where P lz = Z is the distance along the Z-axis to the point
of regard, P, and P2×1 is the upper 2 × 1 component of
P. Analogously for right view, pr = Z−1Pr

2×1.
In the image spacetime coordinate system, xyt, without

loss of generality, consider flows ṽl and ṽr in the left and
right views from temporal instance 0 to 1:

ṽl =
[

plt=1 − plt=0

vlt

]
=
[

plt=1 − plt=0

1

]
, (5)

where vlt = 1 by definition, as time has been taken from
t = 0 to t = 1. Analogously for the right view

ṽr =
[

prt=1 − prt=0

1

]
. (6)

To relate the left and right spatiotemporal orientations, it
is useful to cast the left-camera flow vectors (5) and their
right camera counterparts in terms of temporally varying
position (3) and (4). Left camera-based flow is given by
(5) and substitution from (4) yields

ṽl2×1 = Z−1
t=1P

l
2×1,t=1 − Z−1

t=0P
l
2×1,t=0.
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Further substitution for Pl according to (3) and letting all
subscripts pertain to time (i.e, 0 and 1 denote t = 0 and
t = 1, resp.) yields

ṽl2×1 =
Z0 − Z1

Z0Z1
KP0 +

1
Z1

KV − Z0 − Z1

Z0Z1
KB, (7)

where K = K2×3 is the top two rows of K. Similarly, for
the right camera-based flow

ṽr2×1 =
Z0 − Z1

Z0Z1
KP0 +

1
Z1

KV +
Z0 − Z1

Z0Z1
KB. (8)

Finally, the relationship between the left (7) and right (8)
flows is revealed by taking their difference

ṽr − ṽl =
[

2 (Z0 − Z1) KB/ (Z0Z1)
0

]
=

[
∆
0
0

]
, (9)

where ∆ = 2Bf (Z0 − Z1) / (Z0Z1) captures the instan-
taneous change in disparity.

2.2.2 General Left/Right Orientation Relationship
The relationship (9) was derived only for dominant motion
orientation; whereas, stequels capture information from all
directions w̃ in (x, y, t), which now are considered.

Consider directions w̃r and w̃l in the left and right views,
resp., that are in binocular correspondence, but otherwise
arbitrary in (x, y, t). Discounting the effects of right and
left flows, ṽr and ṽl, yields vectors

δr = w̃r − ṽr =
[
δrx δry 0

]>
, (10)

δl = w̃l − ṽl =
[
δlx δly 0

]>
(11)

that capture the purely spatial orientation of corresponding
elements (see Fig. 1b,c). For the special case of fronto-
parallel surfaces δr = δl, i.e. disregarding motion, oriented
texture appears the same across binocular views. For the
more general case where surfaces are slanted with respect to
the imaging system, the imaged orientation of correspond-
ing elements changes across views, even in the absence of
motion. For present matters, this change can be modeled by
a linear transformation δr = Aδl. Considering that the third
element of the δ vectors is always zero by construction, and
δry = δly due to conventional stereo epipolar constraints for
rectified setups, this relationship takes the form

δr = Aδl, where A =

[
a1 a2 0
0 1 0
0 0 1

]
. (12)

Substituting (10), (11) into (12) and rearranging yields,

w̃r = Aw̃l − Aṽl + ṽr. (13)

Further substitution of (9) results in

w̃r = Aw̃l +
(
−Aṽl + ṽl +

[
∆ 0 0

]>)
(14)

=

[
a1 a2 0
0 1 0
0 0 1

]
w̃l +

[
1− a1 −a2 ∆

0 0 0
0 0 0

]
ṽl

=

[
a1 a2

(
(1− a1)ṽlx − a2ṽly + ∆

)
0 1 0
0 0 1

]
w̃l.

Finally, letting h1 = a1 − 1, h2 = a2 and h3 =(
(1− a1)ṽlx − a2ṽ

l
y + ∆

)
yields the desired transformation

between arbitrary corresponding vectors w̃l and w̃r

w̃r = Hw̃l, where H =

[
1 + h1 h2 h3

0 1 0
0 0 1

]
. (15)

It is interesting to outline a special case associated
with (15). The situation of h1 = h2 = 0 means that
δr = δl in (12), which essentially implies the fronto-parallel
assumption, that is still widely used in contemporary stereo
matching. This case is quite important from a practical
point of view, because it yields reasonable results and can
be faster as well as more numerically stable in estimation
owing to its simpler form.

With (15) in place, it is possible to relate corresponding
stequels. By design, (2), stequel Q reveals the amount of
intensity variation along all directions in spacetime, and the
response φ to unit direction ŵ = w/

√
wTw is

φ = ŵ>Qŵ, (16)

see, e.g., [20]. Assuming that spatiotemporal correspon-
dences vary in orientation pattern, but not in the intensity
per se1, the responses, φl, φr, of corresponding stequels,
Ql,Qr, must be the same for related directions, ŵl, ŵr:

ŵl>Qlŵl = ŵr>Qrŵr.

Expanding the normalizations of ŵl and ŵr and substitut-
ing from (15) produces

w̃l>Qlw̃l

w̃l>w̃l
=

w̃l>H>QrHw̃l

w̃l>H>Hw̃l
,

while noticing that w̃l = ‖w̃l‖ŵl yields

ŵl>Qlŵl

ŵl>ŵl
=

ŵl>H>QrHŵl

ŵl>H>Hŵl
. (17)

Since (17) holds for arbitrary orientations ŵl when Ql

and Qr are stequels in correspondence, it provides the
sought for general constraint on binocular stequels. It will
be referred to as the stequel correspondence constraint and
used to derive an approach to stereo matching.

2.3 Stequel match cost
To determine whether two stequels Ql(x, y, t) and Qr(x+
d, y, t) are in correspondence with disparity d, a match
cost must be defined. In this section, this cost is derived
based on the stequel correspondence constraint, (17), and
is taken as the error residual that results from solving for
h =

[
h1 h2 h3

]> given two candidate stequels.
For a given direction vector ŵl

m at some particular
orientation m and matching stequels, Ql and Qr, the stequel
correspondence constraint, (17), yields a quadratic equation
in the unknowns of h of the form

fm(h) =
(
ŵl>
m Qlŵl

m

) (
ŵl>
m H>Hŵl

m

)
(18)

− (
ŵl>
m ŵl

m

) (
ŵl>
m H>QrHŵl

m

)
= 0.

1. This is a weak form of brightness constancy as additive and multi-
plicative intensity offsets between correspondences are compensated for
by the bandpass and normalized filters used in stequel construction (2).
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Taking a set of M directions, reasonably selected along the
same spanning set of directions used to construct Ql, yields
a set of M equations in the three unknowns of h. Thus, h
can be estimated by minimizing a sum of squared errors

E4 =
M∑
m=1

fm(h)2, (19)

which is quartic in the entries of h. While such a solution
could be sought through analytic or numerical means, it
is expensive to compute and noise sensitive owing to its
order. Therefore, it is useful to linearize each error Eqn. (18)
through expansion as a Taylor series in h and retention of
terms only through first-order to get

gm(h) = fm(0) +∇f>m(0)h, (20)

with 0 being the M × 1 zero vector. Using (20), the final
function to be minimized with respect to h becomes

E2 =
M∑
m=1

(
fm(0) +∇f>m(0)h

)2
, (21)

which is simply quadratic in the elements of h, and thereby
can be solved for via standard linear least-squares [49].
More specifically, letting

G = [∇f>1 (0),∇f>2 (0), . . . ,∇f>M (0)]>

c = −[f1(0), f2(0), . . . , fM (0)]>

yields

h =
(
G>G

)−1
G>c; (22)

E2 = ‖Gh− c‖22 = c>c− (G>c
)> (

G>G
)−1

G>c.

For two stequels under consideration for stereo correspon-
dence this residual, E2, will serve as the local match cost.

Significantly, preliminary experiments showed that match
cost based on the linearized error, (21), yielded only slightly
inferior results in comparison to the original nonlinear
error, (19), which lends further support to pursuing the
advocated (linearized) approach. The nonlinear estimation
was performed via Gauss-Newton optimization using the
solution of (21) as a starting point. In the context of the
current experiment setting described in Sec. 3, the use of
the original nonlinear error, (19), vs. linearized cost, (21),
results only in 3% relative reduction of overall disparity
estimation error; however, it increases the computation time
by an order of magnitude. The relatively strong perfor-
mance of the linearized solution can be explained by the
fact that interest is in a discriminative error measure that
reliably penalizes bad matches, and not in the precise error
value per se. Finally, since matching must be done for
every point, it must be sufficiently simple to be practical:
solution (22) requires the inverse of a 3x3 matrix, which
can be coded in closed form; indeed, the whole matching
procedure is comparable to normalized cross correlation in
terms of computational complexity and runtime.

2.4 Scene Flow Estimation
The results derived so far show how it is possible to use
spatiotemporal information to constrain disparity estimation
without explicit recovery of motion via the stequel corre-
spondence constraint, (17), and the related match cost, (21).
In this section it is shown how to use matched stequels
to estimate 3D scene motion directly without using left-
and right-based optical flow as an intermediary. In contrast,
the left and right stequels could be used independently
to recover optical flow for both the left and right image
streams, i.e., given a region contains adequate structure,
by projecting the eigenvector of the stequels smallest
eigenvalue, which captures locally dominant spatiotemporal
orientation, onto the image plane [20]. For example, if
ê3 =

[
ex ey et

]>
, corresponds to the smallest eigen-

value of Ql, then the left optical flow is given as
[
ex/et ey/et

]>
. (23)

Subsequently, left and right flows could be combined with
disparity to yield 3D flow (e.g., analogous to various meth-
ods reviewed in Sec. 1.2); however, the method presented
below provides more direct access to 3D flow.

Provided camera calibration, spatiotemporal stereo dis-
parity estimates afford the recovery of 4D scene spacetime,
P =

[
Px Py Pz t

]>, and scene flow arises as the
displacement of a point’s spatial position, (Px, Py, Pz),
with time, t. Since stequels are defined in image spacetime,
it is convenient for present purposes to consider the cor-
relate disparity spacetime, p =

[
px py d t

]>
with

disparity, d, relating matched stequels. Notice that P and
p are in one-to-one correspondence given calibration. In
particular, let disparity spacetime be taken relative to the
left camera2, i.e., consider

[
plx ply d t

]>
. Each point

projects into the left and right spatiotemporal volumes as

pl = Πl
[
plx ply d t

]>
=
[
plx ply t

]>

pr = Πr
[
plx ply d t

]>
=
[
plx + d ply t

]>
,

respectively, with

Πl =
[

1 0 0 0
0 1 0 0
0 0 0 1

]
and Πr =

[
1 0 1 0
0 1 0 0
0 0 0 1

]
. (24)

Analogously, appeal to the left, ṽl, and right, ṽr, flow
definitions, (7) and (8), respectively, allows for specification
of their relationships to the disparity spacetime flow, ṽ =[
vx vy vd 1

]>
, to be given as

ṽl =
[
vx vy 1

]> = Πlṽ, (25)

ṽr =
[
vx + vd vy 1

]> = Πrṽ. (26)

Here, reference still is to the left camera system; however,
superscripts on the components of v are suppressed for
compactness of notation.

To relate the left and right flows to their stequels, recall
(as noted above) that the locally dominant spatiotemporal

2. Alternatively, right-based or cyclopean-based camera systems could
be considered in a similar fashion.
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orientation is captured as the eigenvector of the smallest
eigenvalue of the local stequel. Thus,

ṽl = arg min
||q||2=1

||Qlq||2 and ṽr = arg min
||q||2=1

||Qlq||2, (27)

where || · || denotes vector length and q is a dummy
variable considered independently in the two expressions.
Substitution from the equations that relate ṽ to ṽl and ṽr,
(25) and (26), resp., allows the minimizations, (27), to be
combined as

ṽ = arg min
||q||2=1

[||QlΠlq||2 + ||QrΠrq||2].

Further expansion of the square and explicit normalization
allows the previous equation to be rewritten as

ṽ = arg min
q

q>
(
Πl>Ql>QlΠl + Πr>Qr>QrΠr

)
q

q>q
,

or more compactly as

ṽ = arg min
q

q>QMq
q>q

, (28)

where QM =
(
Πl>Ql>QlΠl + Πr>Qr>QrΠr

)
is a 4 × 4

quadric.
The last statement is a standard Rayleigh quotient

[29], which is solved by finding the eigenvector, ê4 =
[ex ey ed et]

> = ṽ, associated with the smallest eigenvalue
of QM. Finally, the recovery of 3D flow vector vector, v3,
from the 4D eigenvector, ê4, proceeds by projecting into
(x, y, d)>-space:

v3 =
[
ex/et ey/et ed/et

]>
, (29)

in a fashion exactly analogous to projecting the 3D eigen-
vector, ê3, to optical flow (23).

While (29) describes an unambiguous way of recovering
the 3D motion from two matched stequels, it is important
to note that the underlying spatiotemporal structure can
limit what can be done in practice. For example, as an
extreme case, if a region is completely lacking in structure
(i.e., uniform intensity/textureless), then no motion recovery
is supported. Happily, the nature of QM’s eignevalues,
λ1 ≥ λ2 ≥ λ3 ≥ λ4, allow the situation to be diagnosed
(c.f., [20], [35]). The case of a well-defined (flow) vector
corresponds to the condition λ3 >> λ4 ≈ 0, i.e., when
the nullspace of QM is one-dimensional. A measure ζ that
reflects this is

ζ = 3 (λ3 − λ4) , (30)

where ζ ∈ [0, 1], given that max(λ3) = 1/3 is achieved
when λ1 = λ2 = λ3, for trace-normalized QM. Similarly,
a higher dimensional nullspace indicates how undercon-
strained the flow is, i.e., instances of the aperture problem
where only the normal flow might be recovered.

3 EMPIRICAL EVALUATION

3.1 Algorithmic instantiations

A software implementation has been developed that in-
puts a binocular video, computes stequels Ql(x, y, t) and
Qr(x, y, t) for both sequences according to formula (2) and
calculates the local match cost, (22), for any given disparity
d, i.e., for stequels related as Ql(x, y, t) and Qr(x+d, y, t).
To show the applicability of this approach to disparity
estimation, the local match cost, (22), has been embedded
in a coarse-to-fine local block-matching algorithm with
shiftable windows [47] working over a Gaussian pyramid
and also in a global graph-cuts with occlusions matcher [28]
operating at the finest scale only; these matchers will be
denoted ST-local and ST-global. Stequels were constructed
from the steerable filter responses, with filters as reported
elsewhere [12]. The spatiotemporal support employed for
stequel computation was x × y × t = 5 × 5 × 5. Pixel-
based disparity estimates are brought to subpixel precision
via Lucas-Kanade type refinement for stequels [2], [45].
Further, given matched stequels, Ql and Qr, an estimate of
3D scene flow is obtained via algorithmic instantiation of
the motion recovery equations (28)-(29). As a representa-
tive run-time: Subpixel disparity estimates were recovered
at 2 frames/second on 640× 480 video for an unoptimized
C++ implementation executing on a 3 GHz processor; speed
scales linearly with pixel dimensions.

To compare with non-stequel matching, versions of the
local and global matchers that work simply on single
left/right frame pixel comparisons are considered; these
matchers will be denoted noST-local and noST-global,
resp. Here, zero-mean normalized cross-correlation with
5× 5 spatial aggregation was used for local matching. For
global pixel matching, the data cost was computed on band-
passed images in order to be more robust to radiometric
differences between the images (level 0 in a Laplacian
pyramid) in stereo pairs. To compare to an alternative
method for enforcing temporal coherence, optical flow is
estimated and used to define a spatiotemporal direction for
match cost aggregation that operates over an equivalent
number of frames as does the oriented filtering used in
stequel construction (1). Here, optical flow is recovered
from the stequel representation itself, (23), to make the
comparison fair. The optical flow-based temporal aggrega-
tion is used only in conjunction with the local matcher,
as incorporation into the global matcher by constructing
a spatiotemporal MRF graph [31] is beyond the scope
of this paper. The local flow-based aggregation matcher
will be denoted flowAg-local. Finally, comparison is made
to an alternative spacetime matching technique that uses
intensities directly [57]. In essence, this last approach
extends block-based matching to the temporal domain by
performing aggregation over local spacetime 3D windows
with optimization for spatial slant and depth motion. To
allow fair comparison, this paradigm was embedded in the
aforementioned local [47] and global [28] methods, which
will be denoted as Zhang-local and Zhang-global, resp.

In general, the comparison of local methods is important,
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Lab 1 Left frame 12 GT disparity flowAg-local disparity flowAg-local error

noST-local disparity noST-local error noST-global disparity noST-global error

Zhang-local disparity Zhang-local error Zhang-global disparity Zhang-global error

ST-local disparity ST-local error ST-global disparity ST-global error

Fig. 4. Lab1 Tests. Example left and right frame 12 (x× y × t = 640× 480× 28) with ground truth disparity (top
row). Labeled boxes (beneath) show recovered disparity maps for compared algorithms and disparity-ground
truth absolute differences. Error values are truncated at 7 pixels to emphasize small values; brighter intensity
correspond to smaller error. A few regions of particular interest in comparing results are highlighted with red
rectangles, best seen in color.

as their results depend the most on the quality of matching
primitives and, thus, would allow access to the performance
of stequel matching in the absence of other cues. The
comparison of global methods is crucial, as they generally
provide superior results and stequels must be able to show
additional benefits in order to be useful in practice.

3.2 Lab sequences

Two laboratory data sets are considered. The first is a
sequence (Lab1) captured with BumbleBee stereo camera
[37] with (framewise) ground truth disparity and disconti-
nuity maps recovered according to a well-known structured
light approach [42], see Fig. 4. This scene includes planes
slanted in depth with texture oriented along epipolar lines
(upper-central part of the scene), various bar-plane arrange-
ment with identical repetitive textures (lower-central part
of the scene) and complicated objects with non-trivial 3D
boundaries and non-Lambertian materials (e.g., the teddy
bear and gargoyle). For this sequence the stereo camera
makes a complicated motion that translates along horizontal
and depth axes, while part of the scene moves up and down;
both camera and scene are on motorized stages.

Visual inspection of the image results (Fig. 4) shows
that noST-local performs relatively poorly. Planar regions
with epipolar aligned texture are generally difficult. Simple

temporal aggregation provided by flowAg-local is seen
to improve on these difficulties; however, performance
degrades near 3D boundaries due to unreliable recovery
of flow estimates in such areas. Similarly, Zhang-local
helps to disambiguate matches in the camouflage region and
slightly improves estimates at the epipolar-aligned textured
regions. However, these positive aspects of Zhang-local are
offset by very pronounced errors around image boundaries,
which makes its results very temporally-inconsistent and
quantitatively quite poor. ST-local does the best of the
three local matchers as its ability to include temporal
information allows it to resolve match ambiguities without
explicit flow recovery. As particular improvements of ST-
local over noST-local and flowAg-local, consider the lower
right and left regions marked with red rectangles in Fig. 4,
which highlight the complex outline of the gargoyle wings
and the vertical bar in front of plane both having identical
textures (camouflage). ST-local is quite accurate in these
challenging regions, while the other local methods perform
relatively poorly. Objects located at different depths in
space give rise to different image motions, even if they
undergo the same world motion – and this difference is
captured with stequels not allowing for improper matches.

For the global matchers, it is seen even with noST-global
that it is possible to recover more precisely the complicated
3D boundaries and to achieve good disparity estimates in
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Lab 2 Left frame 10 GT disparity flowAg-local disparity flowAg-local error

noST-local disparity noST-local error noST-global disparity noST-global error

Zhang-local disparity Zhang-local error Zhang-global disparity Zhang-global error

ST-local disparity ST-local error ST-global disparity ST-global error

Fig. 5. Lab2 Tests. Example left and right frame 10 (x× y × t = 640× 480× 40) with ground truth disparity (top
row). Labeled boxes (beneath) show recovered disparity maps for compared algorithms and disparity-ground
truth absolute differences. Error values are truncated at 7 pixels to emphasize small values; brighter intensity
correspond to smaller error. A few regions of particular interest in comparing results are highlighted with red
rectangles, best seen in color.
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Fig. 6. Error statistics for the Lab1 and Lab2 Tests. An error is taken as greater than 1 pixel discrepancy
between estimated and groundtruth disparity. Bar plots show average error across entire sequences: White bars
are for points within 5 pixels of a surface discontinuity; black bars show overall error. Error by frame plots show
percentage of points in error overall for each frame separately.

low texture regions via propagation from better defined
boundary matches. However, noST-global performs poorly
in the regions with epipolar aligned texture and camou-
flage, as initially incorrect estimates are not subsequently
corrected. While increasing the smoothness improves on
epipolar-aligned textures, it comes at the expense of camou-
flage resolution and vice versa. In comparison, ST-global is
able to recover disparity reliably in these regions, as the ste-
quel representation supports proper resolution of situations
that are ambiguous from the purely spatial information.
Note that while Zhang-global can deal with the camouflage

effect and outperform the noST-global overall, it still fails
to correctly estimate disparity for simple epipolar-aligned
textures, as, once again, incorrect matches are propagated
without correction. Another apparent advantage of the ST-
global is more temporally consistent results – occasional
mismatches in noST-global can be significantly amplified
by propagating into nearby regions.

A second lab sequence, Lab2, is constructed in the same
controlled environment as Lab1, but acquired with signifi-
cant depth motion and out-of-plane rotation. This particular
motion configuration is the most difficult for spatiotemporal
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Left frame 29 Right frame 29 Left frame 53 Right frame 53

noST-local frame 29 noST-global frame 29 noST-local frame 53 noST-global frame 53

ST-local frame 29 ST-global frame 29 ST-local frame 53 ST-global frame 53

Fig. 7. Office Tests. Right column shows left and right images for frames 29 and 53 (x×y× t = 320×240×128).
Remaining boxes are labeled with recovered disparity by algorithm and frame. See accompanying videos at [44].

stereo, as it results in significantly different left and right
spatiotemporal volumes due to slanted surfaces and depth
motion. Furthermore, large image motions are present in
the individual left and right sequences. Figure 5 presents
sample frame results for all five algorithmic instantiations
considered above. Here, the conclusions reached from the
analysis of Lab1 are reinforced. With respect to the local
methods, ST-local provides the most benefit both in weakly
textured regions and near 3D boundaries. The performance
of flowAg-local is hampered by large image motions, which
are problematic to recover explicitly in this case; whereas,
direct stequel-based matching is still able to capitalize on
temporal information without resolving flow and thereby
operates well in the presence of nontrivial motions. With re-
spect to the global methods, the stequel-based matching ST-
global significantly outperforms its pixel-based counterpart
noST-global, especially for weakly-textured highly slanted
foreground surfaces. In this light it is important to note
the particularly poor performance of Zhang methods on
the fine-textured background. An explanation of this phe-
nomenon is the presence of the zooming effect associated
with in-depth motion, which is not effectively captured by
the simple temporal window shifts adopted in [57]. In con-
trast, stequels are constructed as the pointwise measurement
of the first-order intensity structure and explicit temporal
aggregation is not performed during their matching; hence,
no such problem arises.

Error plots for both Lab1 and Lab2 quantify the improve-
ments of stequel-based matching in comparison to rivals
noST, flowAg and Zhang (Fig. 6). Average errors across

the sequences show the benefit of stequels near discon-
tinuities and overall for both local and global matchers.
Plots of error/frame reinforce the average improvements,
but also document improved temporal coherence, as the
stequel-based plots vary relatively little across frames, es-
pecially in comparison to purely spatial matching provided
by noST. Incorporation of the temporal dimension also
benefits flowAg, as its frame-by-frame statistics are rela-
tively stable (albeit overall inferior to stequels); however,
the more naturalistic imagery of the following examples
further emphasizes the superior temporal coherence offered
by stequels, even in comparison to flowAg.

It is worth noting that there are slight differences between
results presented for ST and flowAg in this section and
those presented in a previous report on stequel-based dis-
parity estimation [45]; although, these differences are never
more than approximately 1% in average error, e.g., as re-
ported in Fig. 6. These differences arise because a different
definition for the stequel is used. The earlier report approx-
imated the stequel as E

∑
ww>; whereas, now the exact

formulation, (2), is employed. This change was motivated
by the need for more precise representation to support 3D
scene flow estimation, which was not considered previously.

3.3 Office sequence

The third data set, Office, depicts a more naturalistic (albeit
without ground truth) cluttered indoor office scene where
the camera pans while a person enters and subsequently
moves about in a nonrigid fashion, see Fig. 7. Here, the
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Left frame 11 Left frame 28 Left frame 53

flowAg-local frame 11 flowAg-local frame 28 flowAg-local frame 53

ST-local frame 11 ST-local frame 28 ST-local frame 53

Fig. 8. Rover Tests. Top row shows left view at frames 88, 105 and 130 (x× y× t = 640× 480× 78). Recovered
disparity maps at corresponding times are shown below for two algorithms. See accompanying videos at [44].

superior ability of stequel matching to produce temporally
coherent disparity maps is illustrated via a comparison
of stequel and single frame matching; it is seen that
both ST-local and ST-global best their non-stequel-based
counterparts. While temporal coherence is appreciated most
by viewing the corresponding videos, observations can be
made with respect to Fig. 7. For example, notice the more
consistent disparity estimates recovered for the low texture
walls and the chair via stequel matching, the lack of sudden,
high variation, seen both with noST-local and noST-global,
and the more accurate outlines of the teddy bear, the head
and the hat suspended above.

3.4 Rover sequence
The fourth data set, Rover, is an outdoor sequence acquired
from a robot rover traversing rugged terrain, including a
receding foreground plane, a central diagonal rock outcrop-
ping, left side cliff, various boulders and bushes.

For this case, prior to processing with the stereo algo-
rithms, the sequence was stabilized in software to com-
pensate for the extremely jerky camera motion: Stabiliza-
tion operated by warping neighboring frames to reference
frames throughout the video according to affine transfor-
mations recovered via a parametric motion estimator [4].
For presentation, however, results are shown with respect
to the original (unstabilized) video.

Here the comparison focuses on the improvements to
temporal coherence offered by ST-local over the rival
method for consideration of temporal information, flowAg-
local. As results of depicted frames show, flow-based

aggregation, while providing mostly temporally coherent
estimates is inferior at recovery of 3D boundaries (boulders’
outlines) and still susceptible to occasional gross errors
(e.g., on the ground plane) due to errors in the recovered
flow. In comparison, stequel-based matching, ST-local,
does not exhibit such problems, as it uses spatiotemporal
information in a more direct and complete way.

3.5 Motion estimation

To quantify the performance of the described 3D motion
estimator, (29), a third lab dataset, Lab 3, is introduced;
example frames are shown in Figure 9. The scene is com-
posed of two vertically oriented, planar, textured rectangles
that initially are frontoparallel with respect the camera.
The left rectangle is relatively closer to the camera and
rotates about the vertical. The right rectangle is relatively
further from the camera and rotates about its base on an
axis parallel to the optical axis. The cameras also move
forward toward the rectangles parallel to the optical axis.
For disparity groundtruth, the same methodology used for
Lab 1 and Lab 2 is employed. To acquired 3D scene flow
groundtruth, fiducial markers have been placed in the scene
for reliable subpixel tracking (ARTag package was used for
this purpose [16]). The markers are localized in successive
frames, planes are fit and 3D motion in disparity space is
recovered using an extant robust estimator [11] to yield
dense disparity and flow maps within the surfaces.

Results of applying the described 3D motion estimator
to the Lab 3 dataset are shown in Fig. 10. Median angular
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Left frame 5 Right frame 5 Left xy-motion Left d-motion

Left frame 6 Right frame 6 Disparity 5 motion annotation

Fig. 9. Lab 3 dataset with ground truth disparity and motion. Example motion estimation results for the
consecutive pair of stereo frames (x × y × t = 640 × 480× 7). Left half of the figure shows the original intensity
images for time consecutive frames, while right half show disparity and colour-coded flow components and the
annotation chart associated with them. See accompanying videos at [44].

Disparity Left xy-motion Left d-motion Angular error map

Fig. 10. Example motion estimation results for the middle frame of the Lab 3 dataset for the ST-local. From left to
right: recovered disparity, recovered xy-component of 3D motion; d-component of 3D motion; angular error map
(black value corresponds to 0 and white corresponds to 90 or more degrees).
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Fig. 11. Example motion estimation results for Lab 1, Lab 2 and Office datasets (top and bottom rows, resp.).
From left to right: left view, xy-component of 3D motion, d-component of 3D-motion map, ζ confidence map
(brighter values corresponds to increased confidence). See accompanying videos at [44].
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error between recovered and groundtruth 3D motion vectors
across the entire dataset was 4.03 degrees. The angular
error maps show that accuracy for the left surface where
motion is about the vertical plus looming is especially good;
whereas, limitations in capturing large motions parallel to
the imaging plane are documented in the right surface.
In particular, the error is seen to increase mostly as one
moves toward the upper portions of the surface where
the motion is largest due to the lever-arm nature of the
set-up; use of a coarse-to-fine refinement scheme should
increase the upper end of the range of motion magnitudes
that can be recovered and is a possible direction for future
research. Similarly, the colour coded flow plots show that
the recovered estimates mostly are appropriately smooth,
with breakdown in smoothness also occurring at larger
magnitude motions.

Figure 11 shows the recovered motion for sample frames
of the Lab 1, Lab 2 and Office sequences. The flow
vector confidence measure, ζ, (30) is also displayed. The
recovered motion fields are qualitatively correct and appear
quite smooth considering that no explicit optimization over
flow vectors has been attempted. For Lab 1 the light purple
colour depicted as xy-motion reasonably accurately reflects
the dominantly rightward motion; whereas, the light pink
in d-motion corresponds to the camera moving forward.
Lab 2 results capture the rotation of the platform where
the cap and the box are instantaneously headed in opposite
horizontal directions (green and purple colours), because
they are on different sides of the platform rotation axis;
meanwhile the background is characterized with very light
pink in d-motion map signalling camera moving forward.
Finally, the Office sequences captures the motion of the
person in the lower right of the image as moving rightward
(light purple in xy-motion) and back (dark purple in d-
motion), while picking up the bunch of corn from the tray
(upward xy-motion coloured in red).

It also is illustrated that the confidence measure, ζ,
reports reasonable values, e.g., highest in areas with enough
image texture to yield adequate structure in Q, (28), to
support motion estimates and low in untextured regions,
such as the black backgrounds.

4 DISCUSSION
This paper described a novel approach to recovering tem-
porally coherent disparity estimates using stequels as a spa-
tiotemporal matching primitive. Temporal coherence arises
naturally, as the primitives and the match cost inherently
involve the temporal dimension. Further, matches that are
ambiguous when considering only spatial pattern are re-
solved through the inclusion of temporal information. The
stequel matching machinery is simple and involves linear
computations only, (22). Thorough experimental evaluation
on various datasets shows the benefit of stequel matching
as incorporated both in local and global algorithms. Stereo
sequences with ground truth have been introduced and are
available online for comparison with other algorithms [44].

A particularly notable benefit of stequel matching is the
ability to incorporate temporal information without image

motion recovery. Optical flow estimation is challenging
near 3D boundaries, weakly-textured regions and suscepti-
ble to an aperture problem – importantly, this paper demon-
strated that stequels are powerful in exactly these situations
and provide truly temporally coherent estimates with fewer
isolated gross errors. Apparently, stequels allow stereo
matching to capitalize on available spatiotemporal structure,
even when optical flow recovery is difficult. By necessarily
committing to local flow vectors, especially when data
is insufficient for such interpretation, optical flow yields
unreliable temporal aggregation; in contrast, stequels more
completely characterize whatever spatiotemporal structure
is present and make it available for appropriate matching.
Further, note that it is non-trivial to model continuity in
time with, e.g., an MRF prior model as, strictly speaking,
temporal graph links have to be defined by flow (as in
[31]). Stequels, on the other hand, are directly applicably to
standard 2D MRF graphs and their successful performance
has been documented in this paper.

Beyond their efficacy in establishing binocular corre-
spondence for disparity estimation, stequels have been
shown to provide the basis for estimation of 3D scene flow.
In particular, matched stequels allow for direct recovery
of 3D flow without the need for explicit, independent left
and right image flow estimation. Again, the efficacy of this
approach has been demonstrated empirically.

In conclusion, a computationally tractable and simple
solution to spatiotemporal stereo and scene flow estimation
has been presented, which proved to be very reliable,
versatile and robust in practice. Significantly, the described
research is the first to consider stequel matching for
such purposes and various extension can be considered,
e.g., exploiting the spatiotemporal profile for explicit non-
Lambertian and multi-layer matching.
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