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Abstract. Early delineation of the most salient portions of a temporal
image stream (e.g., a video) could serve to guide subsequent processing to
the most important portions of the data at hand. Toward such ends, the
present paper documents an algorithm for spatiotemporal salience de-
tection. The algorithm is based on a definition of salient regions as those
that differ from their surrounding regions, with the individual regions
characterized in terms of 3D, (x, y, t), measurements of visual spacetime
orientation. The algorithm has been implemented in software and eval-
uated empirically on a publically available database for visual salience
detection. The results show that the algorithm outperforms a variety of
alternative algorithms and even approaches human performance.

1 Introduction

1.1 Motivation

Temporal image streams (e.g., videos) are notorious for the vast amounts of data
they comprise. Correspondingly, the efficient processing of such data would ben-
efit greatly from early delineation of the most salient portions of the data, so
that subsequent operations can focus on those components. Moreover, automatic
detection of salient patterns in video will provide an indication of where humans
will likely focus their attention when viewing similar data streams and thereby
help in filtering vast video databases to provide information of most interest to
humans. As examples, an algorithm for spatiotemporal salience detection could
detect an object moving against the dominant direction of motion (e.g., wrong
way motion detection), as well as a coherent motion against a more complicated
background (e.g., a person moving amidst water waves or camouflaging wind-
blown vegetation). Detection of such salient patterns in visual spacetime will be
able to cue a wide range of subsequent visual processes (e.g., target tracking,
action recognition, video indexing and browsing), without relying on extensive a
priori information (e.g., knowledge of targets of interest or background models).

In response to the observations above, this paper presents a spatiotemporal
salience detection algorithm. In particular, the algorithm accepts as input a tem-
poral stream of images (e.g., a video) and outputs a corresponding saliency map
(e.g., where regions in the video with greater salience are indicated by larger
numerical values in the derived map). The approach defines salient regions as
those that differ from their surrounding neighborhood in terms of the dynamics
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of their particular image streams. Significantly, such centre-surround antagonism
is a pervasive principle in the organization of biological sensory systems and it
is believed to serve the purpose of accentuating salient regions for subsequent
processing [1]. To realize this principle in computational terms, two major issues
must be considered. First, a base representation must be specified over which
the centre-surround comparison is performed. Second, a comparison metric for
the centre and surround must be selected. In the present work, the base rep-
resentation is comprised of pixelwise distributions of visual spacetime, (x, y, t),
orientation measurements that serve to capture the local spatiotemporal struc-
ture. Such measurements provide an integrated approach to characterizing both
the spatial texture and dynamics of a region [2]; correspondingly, centre-surround
differences of such distributions can provide the basis for salience detection. For
the comparison operation, local measurements are aggregated separately in cen-
tre and surround regions and a standard approach to quantifying the difference
between two distributions, the Kullback-Leibler divergence [3], is employed.

1.2 Related research

Owing to its potential to guide and optimize subsequent processing, a variety
of computational approaches have been developed for spatiotemporal salience
detection. Perhaps the most widespread approach is use of learned background
models, with salience defined in terms of differences from the acquired model [4].
To date, acquisition and maintenance of reliable background models remains a
challenging task and fundamentally entails access to reference training imagery,
which is not always available. Other research is limited in applicability by as-
suming a static camera [5–7], that foreground appearance change is slower than
that of background [8] or that background motion compensation is adequate
to remove undesired background motion [9, 10]. Still, other approaches rely on
accumulation of extended foreground tracks [11, 12]. Formulations of salience
detection also have been developed in terms of “Bayesian surprise” [13] and in-
formation maximization [14]. Previous work also has made use of centre-surround
comparisons for spatiotemporal salience detection, with the comparisons being
variously defined over a combination of color, intensity, orientation, flicker, and
motion features [15] or an autoregressive, linear dynamical systems (AR-LDS)
model of dynamic texture [16, 17]. It also is of interest to note that biological
systems appear to be tuned to detecting salient dynamic patterns against their
background [18].

In the present work, spatiotemporal oriented energy filters serve in defining
the representation of observed dynamics over which centre-surround processing
is defined. Previous research has used similar oriented energy filtering for im-
age sequence analysis toward various ends, including optical flow estimation[19–
21], analysis of actions/behaviours [22–25], dynamic texture recognition [2] and
dynamic scene recognition [27]. Also, alternative approaches to capturing spa-
tiotemporal orientation (e.g., HOG3D [28]) or spatial orientation combined with
optical flow might be considered (e.g., HOG/HOF [29]); however, in application
to alternative tasks (e.g., action recognition [30] and dynamic scene recognition
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[27]) spatiotemporal oriented energy has been shown to outperform the alterna-
tives. In any case, it appears that the present work is the first to use spacetime
orientation as the computational basis for spatiotemporal salience detection.

1.3 Contributions

In the light of previous research, the main contributions of the present work
are twofold. First, a novel approach for spatiotemporal salience detection is pro-
posed. The approach makes use of centre-surround differences in measurements
of visual spacetime oriented structure as the basis for salience detection. While
previous research has made use of centre-surround processing for salience detec-
tion (see above), it appears that the present work is the first to apply it in con-
junction with visual spacetime orientation analysis for spatiotemporal salience
detection. Second, the proposed approach is empirically evaluated on a publi-
cally available dataset, including quantitative comparison to seven alternative
approaches. The results show that the proposed approach yields the best overall
performance relative to the alternatives considered.

2 Technical approach

2.1 Overview

The basic principle to be explored for spatiotemporal salience detection is that
the salience of a region is a function of how dissimilar the region’s spacetime
structure is in comparison to its surrounding area: The more dissimilar a region
is from its surround, the higher its salience will be rated. Computational realiza-
tion of this principle entails specification of two matters. First, a base represen-
tation for characterizing visual spacetime structure must be defined. Second, an
algorithmic approach to quantifying the difference in represented structure of a
region and its surround must be given. The next two subsections of this paper
describe each of these components in detail.

2.2 Base representation

In the developed approach to salience detection, visual spacetime structure is
represented in terms of local distributions of multiscale 3D, (x, y, t), spacetime
orientation measurements. These measurements are extracted from input im-
agery (e.g., a video) via application of a spatiotemporal orientation tuned filter
bank. This representation is advantageous as it provides a uniform way to cap-
ture both spatial and dynamic properties of imagery: Orientations that lie along
(x, y)-planes capture spatial pattern; orientations that extend into the temporal
dimension, t, capture dynamic properties. While the basic filtering mechanisms
employed here have mostly been documented previously (e.g., [31, 20, 26]) they
are reviewed in the remainder of this section for the sake of keeping the pa-
per self-contained. Also, the particular approach to dealing with normalization
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embodied in (2), which encompasses a noise floor even while yielding properly
normalized measurements, appears to be novel.

To extract the orientation measurements, oriented energy filtering is realized
in terms of third derivative of 3D Gaussian filters, G3(x; θ, σ), where θ represents
the direction of the filter’s axis of symmetry, σ scale and x = (x, y, t) spacetime
coordinates. These particular filters are selected due to their (moderately) broad
tuning, which allows for a wide range of orientations to be captured with a
relatively small number of filters. Additionally, these filters admit a steerable
and separable formulation [31], which leads to efficient computations. The filter
responses are rectified (squared) and aggregated over a local support region, to
yield the following local oriented energy measure,

E(x; θ, σ) =
∑
x∈Ω
| G3(θ, σ) ∗ I(x) |2, (1)

where Ω is an aggregation region and care is taken to normalize the filters to
ensure that their energy across scale is constant [32]. Notice that while the fil-
tering, (1), is not performed in quadrature, a reasonable measure of energy is
achieved owing to the summation over a support region, Ω: Parseval’s theorem
states that the squared modulus of a signal aggregated over a region is propor-
tional to the squared modulus of its spectrum [33]; thereby, in the present case,
(1) provides a measure of image energy along direction θ at scale σ [26].

The resulting oriented energies are confounded with local image intensity
contrast that is not indicative of spacetime orientation. This state of affairs
makes it impossible to determine whether a high response from a particular
filter is indicative of a close match with the underlying orientation structure or
is instead a low match that yields a high response due to significant contrast in
the overall signal intensity. To arrive at a purer measure of oriented spacetime
structure, the energy measures are divided by the sum of the oriented responses
at each point,

Ē(x; θ, σ) =
E(x; θ, σ) + ε∑

θ̃,σ̃∈M
(E(x; θ̃, σ̃) + ε)

, (2)

where M = σ × θ denotes the set of multiscale oriented energies, (1), ˜ de-
notes variables of summation and ε a constant, set to 1% of the maximum filter
response, introduced as both a noise floor and to avoid instabilities at points
where the overall energy is small. Notice that by adding ε in both the numerator
and denominator of the normalization formula, (2), the final result is a set of
pointwise defined normalized energies, Ē(x; θ, σ); whereas, adding ε in only the
denominator does not yield proper normalization, c.f., [26].

In the currently implemented representation, 10 different directions, θ, are
made explicit, as they span the space of 3D orientations for the G3 filters that
were used [31]. The particular orientations selected were the normals to the
faces of an icosahedron, as they evenly sample the sphere [34], and antipodal
directions are identified. Filters of size 9 are used. Three scales, σ, are consid-
ered corresponding to factor of

√
2 subsampling between a multiscale pyramid
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representation of the input images [35]. By construction, these measures are nor-
malized, which allows for a degree of robustness to unimportant variability in
observations and makes them amenable to subsequent comparison metrics that
are defined over normalized distributions. Further, the representation is simply
realized by an alternating series of linear (i.e., separable convolution and point-
wise addition) and pointwise non-linear operations (i.e., squaring and division);
thus, efficient computations are realized, including real-time implementations
[24]. Overall, pointwise distributions of normalized oriented energy measure-
ments, Ê(x; θ, σ), are made available, with the distributions maintained as 10
(orientations) × 3 (scales) = 30 dimensional, pointwise histograms.

2.3 Centre-surround comparison

Given the defined measurements of spacetime structure, (2), it is necessary to
aggregate the locally defined Ê(x; θ, σ) over centre and surround regions to allow
for subsequent comparisons. The notation used in defining the initial oriented
energy filtering, (1), allows for this consideration via appropriate definition of
the aggregation region, Ω. At any given point, x, a central spacetime support
region, C, is defined, using a radius rC . Similarly, at each point a surround sup-
port region, S, is defined using a radius rS , which extends beyond, but excludes,
C. To calculate the centre distibution, ÊC(x; θ, σ), let Ω = C in (1). To calculate
the surround distibution, ÊS(x; θ, σ), let Ω = S in (1). Importantly, the op-
eration (2) ensures that the final centre, ÊC(x; θ, σ), and surround, ÊS(x; θ, σ),
measurements are properly normalized distributions, albeit defined over different
support regions. An efficient implementation is realized by using integral images
[36].

Finally, to compare the centre and surround measurements, a dissimilar-
ity metric is required so that larger values in the resulting computation imply
greater salience. A variety of metrics might be considered, e.g., Kullback-Leibler
divergence, χ2 and earth mover’s distance as well as L1 and L2 norms [37].
In the present approach, Kullback-Leibler divergence is used as the measure
of dissimilarity between two distributions as it provides a principled approach
based on relative entropy [3]. Further, in preliminary empirical investigation
the Kullback-Leibler divergence showed overall most reasonable performance in
comparison to a sampling of alternatives. Correspondingly, salience, ρ(x), is de-
fine in terms the Kullback-Leibler divergence between centre, ÊC(x; θ, σ), and
surround, ÊS(x; θ, σ), spacetime structure representations as

ρ(x) =
∑

θ̃,σ̃∈M

ÊC(x; θ, σ) log
ÊC(x; θ, σ)

ÊS(x; θ, σ)
(3)

Thus, larger values of ρ are taken as indicative of greater spatiotemporal salience.
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3 Empirical evaluation

3.1 Dataset and experimental protocol

The performance of the presented approach for spatiotemporal saliency detection
has been evaluated on the USC publically available dataset [13]. The dataset
consists of 50 video clips, recorded at 640 × 480 spatial resolution and 30 fps
temporal resolution, for a total of over 25 minutes of playtime. The dataset
includes a wide variety of very challenging scenarios including home videos,
television broadcasts of news, sports, talk shows, commercials and video games.
Example frames for the 50 clips are shown in Figures 1, 2 and 3.

The dataset was groundtruthed for salience with respect to human fixation
patterns. In particular, human eye tracking data was recorded from 8 subjects.
Each subject watched a subset of the collection of video clips, so that eye move-
ment traces for 4 distinct subjects were obtained for each clip. Overall, a total
of 200 eye movement traces containing 10, 192 saccades were gathered for the 50
video clips. In essence, locations to which subjects preferentially fixate via sac-
cade eye movements in comparison to randomly selected locations in the videos
are taken as indicative of salience. A valuable aspect of this groundtruthing
methodology is that it avoids the highly subjective nature of approaches that
make use of humans manually labeling imagery for salience.

Given an algorithm for salience detection, the experimental protocol for eval-
uation with respect to the human eye track-based groundtruth is to compare
algorithm recovered salience at human fixated points vs. randomly sampled
points. In order to ensure proper random sampling, 100 randomized runs are
performed for each sequence. To account for image processing border effects,
recovered salience near image borders is down weighted (proportionally to the
amount of underlying filter support in the salience computation that does not
lie within the images). Letting R and S correspond to distributions of recovered
salience (maintained as 10 bin histograms) at randomly sampled and human fix-
ated points (resp.), the difference is quantified in terms of the Kullback-Leibler
divergence

DKL(R,S) =
∑

Ri log
Ri
Si
, (4)

with subscripts i indexing individual histogram bins. (N.b, while this same mea-
sure is used to compare centre-surround regions in the salience detection algo-
rithm, (3), no bias is thereby introduced, as different distributions are being
compared.) Thus, larger scores for DKL(R,S) indicate that performance of the
salience algorithm is closer to the human-based groundtruth.

A measure of human salience detection performance also has been derived
relative to the groundtruthed dataset, which reflects interobserver consistency
[13]. In essence, given the 4 observers of any particular video, the fixation pattern
of 1 is compared to the remaining 3; the resulting KL divergence performance
measure for human observers across the entire dataset is 0.679 ± 0.011, with
0.011 the standard deviation.
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Additional information about the USC dataset and experimental protocol is
available elsewhere [13].

3.2 Results

Image-based results of the proposed salience detection algorithm are shown in
Figures 1, 2, 3 and 4, where video clip names, example input frames and derived
salience maps are depicted in correspondence. Each depicted salience map, ρ(x),
is derived according to the comparison measure, (3), with larger values depicted
as brighter image intensities. The illustrated results were recovered using centre
and surround radii of 2 and 48 pixels (resp.), relative to 320× 240 spatial image
resolution.

Quantitative results of the KL divergence performance metric, (4), are shown
in Table 1. The right side of the table shows histogram representations of the
salience at random (green) and human fixated (blue) positions (resp.) as recov-
ered by the proposed algorithm. The left side of the table shows the KL diver-
gence and standard deviation for the proposed approach, denoted spatiotemporal
oriented energies (SOE), as well as seven alternative approaches. The alterna-
tive algorithms include the best performing single image measure reported else-
where, local Entropy [13], centre-surround comparisons of temporal Flicker [13],
Motion [13] and a combination of features (colour, 2D spatial orientation, mo-
tion and flicker) centre-surround Saliency [15], Outliers and Bayesian Surprise in
the same feature combination [13] and Attention by Information Maximization
(AIM) [14]. It is seen that the proposed approach (SOE) outperforms all the al-
ternative approaches by a significant margin (i.e., beyond the standard deviation
separations).

Name KL Score
Entropy 0.151 ± 0.005
Flicker 0.179 ± 0.005
Motion 0.180 ± 0.005
Outliers 0.204 ± 0.006
Saliency 0.205 ± 0.006
Surprise 0.241 ± 0.006
AIM 0.328 ± 0.009
SOE 0.624 ± 0.012

Table 1. Left : Comparison of the proposed approach (SOE) with a variety of al-
ternatives. Right: Results for the proposed method (SOE): histogram representation
comparing saliency values at eye-fixations locations (blue) versus random (green) lo-
cations. The KL-divergence score for the proposed algorithm is 0.624, a significant
improvement over the previous top performer (AIM, KL=0.328) and reaching close to
human performance (KL=0.679).
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The key free parameters of the proposed approach are the radii for the cen-
tre, rC , and surround, rS , aggregation regions in the salience measure, (3). To
illustrate the variability of the approach with respect to these parameters, Table
2 shows results for rC ∈ {2, 4, 8} and rS ∈ {12, 24, 48}. Here, it is seen that the
best performance, 0.624±0.012, with 0.012 the standard deviation, resulted from
rC = 2 and rS = 48, resp, which are those presented elsewhere in this paper.

Finally, the current implementation of the proposed salience detection algo-
rithm runs at an average rate of 473 ms/frame as implemented in unoptimized
C++ and running under a Windows 7 OS on an Intel i7 2.4GHz processor (single
core, no threading). The bulk of the processing time is taken by the computation
of the spatiotemporal oriented energies at 3 scales. Here, it is interesting to note
that a GPU implementation of the spatiotemporal oriented energy filtering can
reduce its run time to 30 ms/frame [24].

Centre rC 2 2 2 4 4 4 8 8 8

Surround rS 12 24 48 12 24 48 12 24 48

KL (mean) 0.4931 0.5380 0.6235 0.1292 0.3414 0.4805 0.0000 0.2154 0.2408

KL (std.dev.) 0.0127 0.0117 0.0122 0.0051 0.0092 0.0103 0.0002 0.0065 0.0061

Table 2. Results of the proposed methods using different centre and surround radius
values.

3.3 Discussion

Qualitatively, the image-based results illustrated in Figures 1, 2 and 3 show that
the proposed approach typically provides its largest salience responses in intu-
itively reasonable locations. Upon visual inspection, it can be observed that the
approach preferentially highlights dominant moving objects in home videos (e.g.
beverly-01, monica-05 and beverly-07 ) and television sports (e.g. tv-sports01,
tv-sports02 and tv-sports05 ), heads and especially mouths in talk shows (e.g.
tv-talk01, tv-talk03 and tv-news06 ) and video game targets (e.g. gamecube04,
gamecube13 and gamecube18 ). While the results suggest that response peaks
can be fairly broad, their centroids are generally centred on targets of interest.

Qualitative comparisons to human performance are offered in Figure 4. Here,
it becomes evident that humans are more conservative in their salience detec-
tion than is the proposed algorithm. In particular, while the proposed algorithm
provides salience responses directly in terms of centre-surround contrast in spa-
tiotemporal orientation, humans appear to focus their fixations further based
on higher level information and preferences. For example, humans ignore cast
shadows in favour of moving people and targets in beverly03 and gamecube18,
while the proposed algorithm maps both people/target and shadow contours
to high salience values. Similarly, humans selectively fixate on heads and faces
in tv-music01 and tv-news04, while the algorithm also finds other contours as
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salient. Still, it is interesting to note that humans do not always restrict them-
selves to single salience peaks for a given video, as shown in beverly03, tv-ads05
and tv-music01. Overall, it appears that the proposed salience algorithm largely
succeeds in detecting those points selected by humans as salient, but also marks
additional points as salient.

The qualitative observations are strongly supported by the quantitative re-
sults. In particular, the proposed approach outperforms all the considered al-
ternatives to set a new state-of-the-art. For example, its performance value,
DK,L = 0.624, is almost twice that of the second best performer (AIM), which
achieves DK,L = 0.328. Consequently, it is of interest to compare the AIM vs.
the proposed SOE approach in terms of how they operate. The AIM approach
makes use of a procedure to learn spacetime oriented Gabor-like filters from
a large corpus of video data, which are not guaranteed to span the underly-
ing visual spacetime structure; whereas, the proposed approach makes use of a
predefined set of spacetime Gaussian derivative filters that are defined to pro-
vide a spanning basis set for 3D orientation structure (e.g., of visual spacetime).
Further, while the AIM approach in essence considers global image support in
making local salience determinations, the proposed approach employs more lo-
cal comparisons, i.e., restricted to the employed centre-surround support regions.
Significantly, these design choices allow the proposed approach to not only best a
wide range of alternative algorithms, but to even approach human performance,
DK,L = 0.679.

The algorithm also appears to be well behaved with respect to variation in the
supports used in centre-surround aggregations (Table 2). Interestingly, it is seen
that maintaining relatively small centre and large surround yields best overall
performance, which suggests that salience is reasonably defined (at least in the
considered dataset) in terms of relatively small support regions in comparison
to their surrounds.

4 Conclusions

This paper has presented a novel approach to spatiotemporal salience detec-
tion. The approach is based on two key ideas. First, visual spacetime is usefully
characterized in terms of local distributions of 3D, (x, y, t), orientation measure-
ments. Second, salience is defined in terms of the discrepancy between centre
and surround aggregation regions of the local orientation measurements. While
the current approach makes use of multiscale orientation measurements, it oper-
ates at a single pair of aggregation scales in its centre-surround comparisons. A
potential direction for future research would be to make use of multiple paired
aggregation regions. In this way both inner scale (local scale of oriented filtering)
and outer scale (centre and surround aggregation regions) could be more fully
exploited [38] in salience detection.

The entire approach has been implemented in software and evaluated on a
publicly available dataset. The empirical results show that the approach out-
performs a variety of alternative state-of-the-art algorithms for spatiotemporal
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beverly01 beverly03 beverly05 beverly06 beverly07

beverly08 gamecube02 gamecube04 gamecube05 gamecube06

gamecube13 gamecube16 gamecube17 gamecube18 gamecube23

monica03 monica04 monica05 monica06 saccadetest

Fig. 1. Sample results from the USC dataset (one image per video) - videos 1-20:
Upper row shows input image frames; lower row shows the saliency map produced by
the proposed approach.
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standard01 standard02 standard03 standard04 standard05

standard06 standard07 tv-action01 tv-ads01 tv-ads02

tv-ads03 tv-ads04 tv-announce01 tv-music01 tv-news01

tv-news02 tv-news03 tv-news04 tv-news05 tv-news06

Fig. 2. Sample results from the USC dataset (one image per video) - videos 21-40:
Upper row shows input image frames; lower row shows the saliency map produced by
the proposed approach.
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tv-news08 tv-sports01 tv-sports02 tv-sports03 tv-sports04

tv-sports05 tv-talk01 tv-talk03 tv-talk04 tv-talk05

Fig. 3. Sample results from the USC dataset (one image per video) - videos 41-50:
Upper row shows input image frames; lower row shows the saliency map produced by
the proposed approach.

beverly03 gamecube18 tv-ads05 tv-music01 tv-news04

Fig. 4. Sample comparative results of the proposed approach vs. human fixation maps:
The top row shows input image frames; the middle row shows saliency maps produced
by the proposed approach; the bottom row shows the human derived fixation maps.
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salience detection. Moreover, the results show that the evaluated implementa-
tion approaches human performance in selection of spatiotemporal salient points
in video imagery.
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